
Holodeck Documentation
Release 0.3.1

Joshua Greaves, Max Robinson, Nick Walton

Apr 02, 2020

Holodeck Documentation

1 Installation 3
1.1 Requirements . 3
1.2 Install Client via pip . 3
1.3 Install Client via git . 3
1.4 Docker Installation . 4
1.5 Managing World Packages . 4

2 Getting Started 7
2.1 Code Examples . 8

3 Using Holodeck 11
3.1 Viewport Hotkeys . 11
3.2 Units and Coordinates in Holodeck . 12
3.3 Improving Holodeck Performance . 13
3.4 Using Holodeck Headless . 15
3.5 Configuring Weather and Time . 16

4 Holodeck Packages 19
4.1 DefaultWorlds Package . 19
4.2 Dexterity package . 26
4.3 Package Structure . 36
4.4 Scenarios . 37
4.5 Tasks . 41
4.6 Package Installation Location . 48

5 Holodeck Agents 49
5.1 AndroidAgent . 49
5.2 HandAgent . 53
5.3 NavAgent . 55
5.4 SphereAgent . 55
5.5 TurtleAgent . 56
5.6 UavAgent . 57

6 Changelog 59
6.1 Holodeck 0.3.1 . 59
6.2 Holodeck 0.3.0 . 60
6.3 Holodeck 0.2.2 . 62

i

6.4 Holodeck 0.2.1 . 63
6.5 Holodeck 0.1.0 . 64

7 Holodeck 65

8 Agents 67

9 Environments 77

10 Spaces 83

11 Commands 87

12 Holodeck Client 93

13 Package Manager 95

14 Sensors 99

15 Shared Memory 113

16 Util 115

17 Exceptions 117

18 Weather Controller 119

19 Indices and tables 121

Python Module Index 123

Index 125

ii

Holodeck Documentation, Release 0.3.1

Note: Have a question? Join our Discord!

Holodeck Documentation 1

https://discord.gg/Xqqksje

Holodeck Documentation, Release 0.3.1

2 Holodeck Documentation

CHAPTER 1

Installation

Holodeck is installed in two portions: a client python library (holodeck) is installed first, which then downloads
world packages. The python portion is very small, while the world packages (“binaries”) can be several gigabytes.

1.1 Requirements

• >= Python 3.5

• Several gigabytes of storage

• pip3

• Linux: OpenGL 3+

1.2 Install Client via pip

The latest stable Holodeck package is available in a pip repository:

pip install holodeck

Note: On some Ubuntu systems a dependency of Holodeck (posix-ipc) can fail to install if you do not have the
python3-dev package installed.

$ apt install python3-dev

1.3 Install Client via git

To use the latest version of Holodeck, you can install and use Holodeck simply by cloning the BYU-PCCL/holodeck
repository, and ensuring it is on your sys.path.

3

https://github.com/BYU-PCCL/holodeck

Holodeck Documentation, Release 0.3.1

The master branch is kept in sync with the pip repository, the develop branch is the bleeding edge of development.

If you want to download a specific release of Holodeck, each release is tagged in the Git repository.

1.4 Docker Installation

Holodeck’s docker image is only supported on Linux hosts.

You will need nvidia-docker installed.

The repository on DockerHub is pccl/holodeck.

Currently the following tags are availible:

• base : base image without any worlds

• default-worlds : comes with the default worlds pre-installed

• dexterity : comes with the dexterity package pre-installed

This is an example command to start a holodeck container

nvidia-docker run --rm -it --name holodeck pccl/holodeck:default-worlds

Note: Holodeck cannot be run with root privileges, so the user holodeckuser with no password is provided in the
docker image.

1.5 Managing World Packages

The holodeck python package includes a Package Manager that is used to download and install world packages.
Below are some example usages, but see Package Manager for complete documentation.

1.5.1 Install a Package Automatically

>>> from holodeck import packagemanager
>>> packagemanager.installed_packages()
[]
>>> packagemanager.available_packages()
{'DefaultWorlds': ['0.1.0', '0.1.1'], 'MoveBox': ['0.0.1']}
>>> packagemanager.install("DefaultWorlds")
Installing DefaultWorlds ver. 0.1.1 from http://localhost:8080/packages/0.2.0/
→˓DefaultWorlds/Linux/0.1.1.zip
File size: 1.55 GB
|| 100%
Unpacking worlds...
Finished.
>>> packagemanager.installed_packages()
['DefaultWorlds']

4 Chapter 1. Installation

https://hub.docker.com/r/pccl/holodeck

Holodeck Documentation, Release 0.3.1

1.5.2 Installation Location

By default, Holodeck will install packages local to your user profile. See Package Installation Location for more
information.

1.5.3 Manually Installing a Package

To manually install a package, you will be provided a .zip file. Extract it into the worlds folder in your Holodeck
installation location (see Package Installation Location)

Note: Ensure that the file structure is as follows:

+ worlds
+-- YourManuallyInstalledPackage
| +-- config.json
| +-- etc...
+-- AnotherPackage
| +-- config.json
| +-- etc...

Not

+ worlds
+-- YourManuallyInstalledPackage
| +-- YourManuallyInstalledPackage
| +-- config.json
| +-- etc...
+-- AnotherPackage
| +-- config.json
| +-- etc...

1.5.4 Print Information

There are several convenience functions provided to allow packages, worlds, and scenarios to be easily inspected.

>>> packagemanager.package_info("DefaultWorlds")
Package: DefaultWorlds

Platform: Linux
Version: 1.04
Path: LinuxNoEditor/Holodeck/Binaries/Linux/Holodeck
Worlds:
UrbanCity

Scenarios:
UrbanCity-Follow:

Agents:
Name: ThisIsAScenario
Type: UavAgent
Sensors:
RGBCamera
OrientationSensor
LocationSensor

CyberPunkCity
Scenarios:

(continues on next page)

1.5. Managing World Packages 5

Holodeck Documentation, Release 0.3.1

(continued from previous page)

CyberPunkCity-Follow:
Agents:

Name: ThisIsAScenario
Type: UavAgent
Sensors:
RGBCamera
OrientationSensor
LocationSensor

You can also look for information for a specific world or scenario

packagemanager.world_info("UrbanCity")
packagemanager.scenario_info("UrbanCity-Follow")

6 Chapter 1. Installation

CHAPTER 2

Getting Started

First, see Installation to get the holodeck package and DefaultWorlds installed.

A minimal Holodeck usage example is below:

import holodeck
import numpy as np

env = holodeck.make("UrbanCity-MaxDistance")

The UAV takes 3 torques and a thrust as a command.
command = np.array([0, 0, 0, 100])

env.reset()
for _ in range(180):

state, reward, terminal, info = env.step(command)

Notice that:

1. You pass the name of a scenario into holodeck.make

See Packages for all of the different worlds and scenarios that are available.

2. The interface of Holodeck is designed to be familiar to OpenAI Gym

3. You must call .reset() before calling .step() or .tick()

You can access data from a specific sensor with the state dictionary:

location_data = state["LocationSensor"]

That’s it! Holodeck is meant to be fairly simple to use.

Check out the different worlds that are available, read the API documentation, or get started on making your own
custom scenarios.

7

https://gym.openai.com/

Holodeck Documentation, Release 0.3.1

2.1 Code Examples

Below are some snippets that show how to use different aspects of Holodeck.

2.1.1 Visualizing RGBCamera Output

It can be useful to display the output of the RGB camera while an agent is training. Below is an example using the
cv2 library.

When the window is open, press the 0 key to tick the environment and show the next window.

import holodeck, cv2

env = holodeck.make("MazeWorld-FinishMazeSphere")
env.act('sphere0', [0])

for _ in range(10):
state = env.tick()

pixels = state['sphere0'][holodeck.sensors.RGBCamera.sensor_type]
cv2.namedWindow("Camera Output")
cv2.moveWindow("Camera Output", 500, 500)
cv2.imshow("Camera Output", pixels[:, :, 0:3])
cv2.waitKey(0)
cv2.destroyAllWindows()

2.1.2 Custom Scenario Configurations

Holodeck worlds are meant to be configurable by changing out the scenario (see Scenarios). There are some scenarios
included with Holodeck packages distributed as .json files, but Holodeck is intended to be used with user-created
scenarios as well.

These can be created using a dictionary in a Python script or by creating a .json file. Both methods follow the same
format, see Scenario File Format

Using a Dictionary for a Scenario Config

Create a dictionary in Python that matches the structure specified in Scenario File Format, and pass it in to
holodeck.make().

Example

1 import holodeck
2

3 cfg = {
4 "name": "test_rgb_camera",
5 "world": "ExampleWorld",
6 "package_name": "DefaultWorlds",
7 "main_agent": "sphere0",
8 "agents": [
9 {

(continues on next page)

8 Chapter 2. Getting Started

Holodeck Documentation, Release 0.3.1

(continued from previous page)

10 "agent_name": "sphere0",
11 "agent_type": "SphereAgent",
12 "sensors": [
13 {
14 "sensor_type": "RGBCamera",
15 "socket": "CameraSocket",
16 "configuration": {
17 "CaptureWidth": 512,
18 "CaptureHeight": 512
19 }
20 }
21],
22 "control_scheme": 0,
23 "location": [0, 0, 0]
24 }
25]
26 }
27

28 with holodeck.make(scenario_cfg=cfg) as env:
29 env.tick()

Using a .json file for a Scenario Config

You can specify a custom scenario by creating a .json file that follows the format given in Scenario File Format and
either:

1. Placing it in Holodeck’s scenario search path

2. Loading it yourself and parsing it into a dictionary, and then using that dictionary as described in Using a
Dictionary for a Scenario Config

Holodeck’s Scenario Search Path

When you give a scenario name to holodeck.make(), Holodeck will search look each package folder (see Package
Installation Location) until it finds a .json file that matches the scenario name.

So, you can place your custom scenario .json files in that folder and Holodeck will automatically find and use it.

Warning: If you remove and re-install a package, Holodeck will clear the contents of that folder

2.1.3 Multi Agent Example

With Holodeck, you can control more than one agent at once. Instead of calling .step(), which both

1. passes a single command to the main agent, and

2. ticks the simulation

you should call .act(). Act supplies a command to a specific agent, but doesn’t tick the game.

Once all agents have received their actions, you can call .tick() to tick the game.

After calling .act(), every time you call .tick() the same command will be supplied to the agent. To change the
command, just call .act() again.

2.1. Code Examples 9

Holodeck Documentation, Release 0.3.1

The state returned from tick is also somewhat different.

The state is now a dictionary from agent name to sensor dictionary.

You can access the reward, terminal and location for the UAV as shown below.

Code

import holodeck
import numpy as np

env = holodeck.make('CyberPunkCity-Follow')
env.reset()

env.act('uav0', np.array([0, 0, 0, 100]))
env.act('nav0', np.array([0, 0, 0]))
for i in range(300):

states = env.tick()

states is a dictionary
task = states["uav0"]["FollowTask"]

reward = task[0]
terminal = task[1]
location = states["uav0"]["LocationSensor"]

There is also an examples.py in the root of the holodeck repo with more example code.

10 Chapter 2. Getting Started

https://github.com/BYU-PCCL/holodeck/blob/master/example.py
https://github.com/BYU-PCCL/holodeck

CHAPTER 3

Using Holodeck

3.1 Viewport Hotkeys

When the viewport window is open, and the environment is being ticked (with calls to tick() or step(), there are
a few hotkeys you can use.

3.1.1 Hotkeys

The AgentFollower, or the camera that the viewport displays, can be manipulated as follows:

Key Action Description
c Toggle

camera
mode

Toggles the camera from a chase camera and perspective camera, which shows what the agent’s
camera sensor sees.

v Toggle
spectator
mode

Toggles spectator mode, which allows you to free-cam around the world.

w a
s d

Move
camera

Move the viewport camera around when in spectator/free-cam mode.

q
ctrl

Descend For spectator/free-cam mode

e
space

Ascend For spectator/free-cam mode

shiftTurbo Move faster when in spectator/free-cam
tab Cycle

through
agents

When not in spectator/free-cam mode, cycles through the agents in the world

h Toggle
HUD

The HUD displays the name and location of the agent the viewport is following, or the location
of the camera if the viewport is detached (spectator mode)
Note that this will interfere with the ViewportCapture sensor

11

Holodeck Documentation, Release 0.3.1

Opening Console

Pressing ~ will open Unreal Engine 4’s developer console, which has a few useful commands. See the Unreal Docs
for a complete list of commands.

Useful Commands

• stat fps

Prints the frames per second on the screen.

3.2 Units and Coordinates in Holodeck

Holodeck uses meters for units and a left-handed coordinate system for all locations, distances, and offsets.

3.2.1 Coordinate System

Since Holodeck depends on Unreal Engine, we use a left handed coordinate system with positive z being up. This is
something baked deep into the engine that we can’t easily change.

So, when you need to specify a location in Holodeck, the format is as follows

[x, y, z] where:

• Positive x is forward

• Positive y is right

• Positive z is up

12 Chapter 3. Using Holodeck

https://api.unrealengine.com/udk/Three/ConsoleCommands.html
https://twitter.com/timsweeneyepic/status/952661474501111808?lang=en

Holodeck Documentation, Release 0.3.1

Remember that the units for [x, y, z] are in meters (Unreal Engine defaults to centimeters, we’ve changed this to
make things a bit easier).

3.2.2 Rotations

Rotations are specified in [roll, pitch, yaw] / [x, y, z] format, in in degrees. This means

• Roll: Rotation around the forward (x) axis

• Pitch: Rotation around the right (y) axis

• Yaw: Rotation around the up (z) axis

(source)

3.3 Improving Holodeck Performance

Holodeck is fairly performant by default, but you can also sacrifice features to increase your frames per second.

• RGBCamera

– Disabling the RGBCamera

– Lowering the RGBCamera resolution

3.3. Improving Holodeck Performance 13

https://api.unrealengine.com/INT/API/Runtime/Core/Math/FRotator/index.html

Holodeck Documentation, Release 0.3.1

– Changing ticks per capture

• Disable Viewport Rendering

• Change Render Quality

3.3.1 RGBCamera

By far, the biggest single thing you can do to improve performance is to disable the RGBCamera. Rendering the cam-
era every frame causes a context switch deep in the rendering code of the engine, which has a significant performance
penalty.

This chart shows how much performance you can expect to gain or loose adjusting the RGBCamera (left column is
frame time in milleseconds)

Resolution UrbanCity MazeWorld AndroidPlayground
No Camera 8.55 ms 117 fps 4.69 ms 213 fps 2.47 ms 405 fps
64 17 ms 59 fps 11 ms 91 fps 4.87 ms 205 fps
128 20 ms 50 fps 11.6 ms 86 fps 5.59 ms 179 fps
256 22 ms 45 fps 14.71 ms 68 fps 9.02 ms 111 fps
512 35 ms 29 fps 30.8 ms 32 fps 24.81 ms 40 fps
1024 89 ms 11 fps 84.2 ms 12 fps 94.55 ms 11 fps
2048 410 ms 2 fps 383 ms 3 fps 366 ms 3 fps

Disabling the RGBCamera

Remove the RGBCamera entry from the scenario configuration file you are using.

See Custom Scenario Configurations.

Lowering the RGBCamera resolution

Lowering the resolution of the RGBCamera can also help speed things up. Create a custom scenario and in the
configuration block for the RGBCamera set the CaptureWidth and CaptureHeight.

See RGBCamera for more details.

Changing ticks per capture

The number of ticks per capture can be adjusted to give a lower average frame time.

See the set_ticks_per_capture() method.

3.3.2 Disable Viewport Rendering

Rendering the viewport window can be unnecessary during training. You can disable the viewport with the
should_render_viewport() method.

At lower RGBCamera resolutions, you can expect a ~40% frame time reduction.

14 Chapter 3. Using Holodeck

Holodeck Documentation, Release 0.3.1

3.3.3 Change Render Quality

You can adjust Holodeck to render at a lower (or higher) quality to improve performance. See the
set_render_quality() method

Below is a comparison of render qualities and the frame time in ms

Quality MazeWorld UrbanCity AndroidPlayground
0 10.34 12.33 6.63
1 10.53 15.06 6.84
2 14.81 19.19 8.66
3 15.58 21.78 9.2

3.4 Using Holodeck Headless

On Linux, Holodeck can run headless without opening a viewport window. This can happen automatically, or you can
force it to not appear

3.4.1 Headless Mode vs Disabling Viewport Rendering

These are two different features.

Disabling Viewport Rendering is calling the (should_render_viewport()) method on a
HolodeckEnvironment. This can be done at runtime. It will appear as if the image being rendered in the
viewport has frozen, but RGBCamera s and other sensors will still update correctly.

Headless Mode is when the viewport window does not appear. If Headless Mode is manually enabled, it will also
disable viewport rendering automatically.

3.4.2 Forcing Headless Mode

In holodeck.make(), set show_viewport to False.

Note: This will also disable viewport rendering (should_render_viewport())

If you still want to render the viewport (ie for the ViewportCapture) when running headless, simply set
(should_render_viewport()) to True

3.4.3 Automatic Headless Mode

If the engine does not detect the DISPLAY environment variable, it will not open a window. This will happen auto-
matically if Holodeck is run from a SSH session.

Note: This will not disable viewport rendering.

3.4. Using Holodeck Headless 15

Holodeck Documentation, Release 0.3.1

3.5 Configuring Weather and Time

Holodeck worlds have weather and time that can be configured, either with Scenarios or programmatically in real
time.

See the WeatherController documentation for reference.

3.5.1 Weather Options

Type

Holodeck worlds have three possible types of weather: sunny cloudy and rain.

In a scenario

{
"weather": {

"type": "rain"
}

}

Programmatically

env = holodeck.make("...")
env.weather.set_weather("rain")

16 Chapter 3. Using Holodeck

Holodeck Documentation, Release 0.3.1

Fog depth

Fog depth is set on scale from 0 to 1.

In a scenario

{
"weather": {

"fog_depth": 0.5
}

}

Programmatically

env = holodeck.make("...")
env.weather.set_fog_density(0.5)

Day length

Note: By default, the day cycle in Holodeck worlds is turned off and time is fixed.

The day cycle length is set in minutes.

In a scenario

{
"weather": {

"day_cycle_length": 60
}

}

Programmatically

env = holodeck.make("...")
env.weather.start_day_cycle(60)

Time

The time of the day can be set as a number between 0 and 23 inclusive.

3.5. Configuring Weather and Time 17

Holodeck Documentation, Release 0.3.1

In a scenario

{
"weather": {

"hour": 12
}

}

Programmatically

env = holodeck.make("...")
env.weather.set_day_time(12)

18 Chapter 3. Using Holodeck

CHAPTER 4

Holodeck Packages

These are the different packages available for download. A holodeck package contains one or more worlds, which
each have one or more scenarios.

4.1 DefaultWorlds Package

4.1.1 AndroidPlayground

This is a small world with some props agents can interact with. It was designed for the android to interact with.

19

Holodeck Documentation, Release 0.3.1

Layout

Tagged Items

• cube

• small-ball

• big-ball

• small-box1

• small-box2

• large-box

AndroidPlayground-MaxDistance

Type: Distance Task

This scenario rewards the agent for maximizing its distance from the start location.

Agents

• android0: Main Android agent

See AndroidPlayground-MaxDistance.json.

20 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/AndroidPlayground-MaxDistance.json

Holodeck Documentation, Release 0.3.1

4.1.2 CyberPunkCity

This world is a dark, moody environment. It has a humanoid figure running around, the intention is that agents learn
to follow it.

Layout

CyberPunkCity-Follow.rst

Type: Follow Task

This scenario rewards the UAV for following the NavAgent and keeping it in sight.

Agents

• uav0: UAV , Main agent,

• nav0: NavAgent that will automatically navigate to a predetermined location

4.1. DefaultWorlds Package 21

Holodeck Documentation, Release 0.3.1

See CyberPunkCity-FollowSight.json.

4.1.3 EuropeanForest

This world is a very large and contains a few different environments. It has plains, forest, and a few structures for
agents to interact with.

Layout

EuropeanForest-MaxDistance

Type: Distance Task

This scenario rewards the agent for maximizing its distance from the start location.

Agents

• uav0: Main UAV agent

See EuropeanForest-MaxDistance.json.

22 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/CyberPunkCity-FollowSight.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/EuropeanForest-MaxDistance.json

Holodeck Documentation, Release 0.3.1

4.1.4 MazeWorld

This is a small, linear world meant to help agents learn to navigate around obstacles.

Layout

Tagged Items

• GoalPost

MazeWorld-FinishMazeSphere

The goal of this task is for the sphere agent to finish the maze and get as close as possible to post with a golden ball
on the other end.

Agents

• sphere0: Main sphere agent

See MazeWorld-FinishMazeSphere.json.

4.1. DefaultWorlds Package 23

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/MazeWorld-FinishMazeSphere.json

Holodeck Documentation, Release 0.3.1

4.1.5 InfiniteForest

This world is a randomly generated forest that will generate wherever the main agent goes. Each time the world is
initialized, it will have a different layout.

InfiniteForest-MaxDistance

Type: Distance Task

This scenario rewards the agent for maximizing its distance from the start location.

Agents

• uav0: Main UAV agent

See InfiniteForest-MaxDistance.json.

4.1.6 RedwoodForest

This is a forest setting with more diverse tree sizes. It has a fixed size.

24 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/InfiniteForest-MaxDistance.json

Holodeck Documentation, Release 0.3.1

Layout

RedwoodForest-MaxDistance

Type: Distance Task

This scenario rewards the agent for maximizing its distance from the start location.

Agents

• uav0: Main UAV agent

See RedwoodForest-MaxDistance.json.

4.1.7 Urban City

Urban City contains a few city blocks and roads, meant to help agents learn to navigate an urban setting.

4.1. DefaultWorlds Package 25

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/RedwoodForest-MaxDistance.json

Holodeck Documentation, Release 0.3.1

Layout

UrbanCity-MaxDistance

Type: Distance Task

This scenario rewards the agent for maximizing its distance from the start location.

Agents

• uav0: Main UAV agent

See UrbanCity-MaxDistance.json.

4.2 Dexterity package

4.2.1 Playroom

This is a small playroom with movable toys.

26 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/DefaultWorlds/UrbanCity-MaxDistance.json

Holodeck Documentation, Release 0.3.1

Layout

Playroom-Android

This scenario allows the AndroidAgent to interact with the playroom. There is no reward or objective, as the goal of
this task is to encourage play.

Agents

• android0: Main Android agent

See Playroom-Android.json .

Playroom-Hand

This scenario allows the HandAgent to interact with the playroom. There is no reward or objective, as the goal of this
task is to encourage play.

4.2. Dexterity package 27

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/Playroom-Android.json

Holodeck Documentation, Release 0.3.1

Agents

• hand0: Main Hand agent

See Playroom-Hand.json .

Playroom-StandFromGround

Type: Location Task

In this scenario the AndroidAgent must stand up, as measured by its head position. The android begins laying on the
ground.

Agents

• android0: Main AndroidAgent

See Playroom-StandFromGround.json.

Playroom-StandFromStanding

Type: Location Task

In this scenario the AndroidAgent must stand itself back up from the standing position, as measured by the android’s
head position.

Since the android is initially standing, it will initially receive some reward.

Agents

• android0: Main AndroidAgent

See Playroom-StandFromStanding.json.

28 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/Playroom-Hand.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/Playroom-StandFromGround.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/Playroom-StandFromStanding.json

Holodeck Documentation, Release 0.3.1

4.2.2 CupGame

This is a small room with a game of ball and cups sitting on a table. In order to activate the game, an agent must have
the CupGameTask added to it.

If you want to reconfigure the task (change the number of shuffles, change the speed, etc), call the start_game()
method on the CupGameTask class or alter the config file (see the configuration of the Cup Game Task.)

4.2. Dexterity package 29

Holodeck Documentation, Release 0.3.1

Layout

CupGame-Custom

Type: Cup Game Task

This scenario has a hand agent positioned directly in front of the cup game. The game is not automatically set up with
any configuration, which requires the user to call the start_game() method and manually configure the game.

Agents

• hand0: Main Hand agent

See CupGame-Custom.json.

CupGame-Easy

Type: Cup Game Task

This scenario has a hand agent positioned directly in front of the cup game. The game is configured to be fairly easy
with only 3 shuffles and the lowest speed multiplier of 1.

30 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CupGame-Custom.json

Holodeck Documentation, Release 0.3.1

Agents

• hand0: Main Hand agent

See CupGame-Easy.json.

CupGame-Hard

Type: Cup Game Task

This scenario has a hand agent positioned directly in front of the cup game. The game is configured to be more difficult
with 10 shuffles and a higher speed multiplier of 3.

Agents

• hand0: Main Hand agent

See CupGame-Hard.json.

4.2.3 Clean Up

This is an alleyway with a trash can in the middle. A Clean Up Task task can be used to spawn trash around the can
and give a reward based on the amount of trash collected in the can.

4.2. Dexterity package 31

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CupGame-Easy.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CupGame-Hard.json

Holodeck Documentation, Release 0.3.1

Layout

CleanUp-GroundAndroid

Type: Clean Up Task

This scenario gives an android a reward based on the number of pieces of trash it picks up off the ground and puts in
the trash can. The trash is spawned on the ground around the trash can.

Agents

• android0: Main Android agent

See CleanUp-GroundAndroid.json.

CleanUp-GroundHand

Type: Clean Up Task

This scenario gives a hand agent a reward based on the number of pieces of trash it picks up off the ground and puts
in the trash can. The trash is spawned on the ground around the trash can.

Agents

• hand0: Main Hand agent

See CleanUp-GroundHand.json.

32 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CleanUp-GroundAndroid.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CleanUp-GroundHand.json

Holodeck Documentation, Release 0.3.1

CleanUp-TableAndroid

Type: Clean Up Task

This scenario gives an android a reward based on the number of pieces of trash it pushes from a table to the adjacent
the trash can. This is intended to be an easier version of other cleanup tasks, since the agent does not have to pick up
the trash, it can simply slide it off the table.

Agents

• android0: Main Android agent

See CleanUp-GroundAndroid.json.

CleanUp-TableHand

Type: Clean Up Task

This scenario gives a hand agent a reward based on the number of pieces of trash it pushes from a table to the adjacent
the trash can. This is intended to be an easier version of other cleanup tasks, since the agent does not have to pick up
the trash, it can simply slide it off the table.

Agents

• hand0: Main Hand agent

See CleanUp-TableHand.json.

4.2. Dexterity package 33

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CleanUp-GroundAndroid.json
https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/CleanUp-TableHand.json

Holodeck Documentation, Release 0.3.1

4.2.4 Grip

This is a very small room with a bottle sitting on a platform in the middle. The bottle has simulated physics.

Layout

34 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

Tagged Items

• bottle

Grip-LiftBottle

Type: Location Task

In this scenario the hand agent must lift the bottle to a certain point. The scenario is intended to teach the agent motor
control and basic object manipulation.

Agents

• hand0: Main Hand agent

See Grip-LiftBottle.json .

4.2.5 AndroidPlaytime

This is a small playroom with small, movable toys and windows.

4.2. Dexterity package 35

https://github.com/BYU-PCCL/holodeck-configs/blob/master/Dexterity/Grip-LiftBottle.json

Holodeck Documentation, Release 0.3.1

Layout

AndroidPlaytime-PlayRoom

This scenario has an android agent spawn in the AndroidPlaytime room. There is no reward or objective, the goal of
this task is to encourage play.

Agents

• android0: Main Android agent

4.3 Package Structure

A holodeck package is a .zip file containing a build of holodeck-engine that contains worlds and Scenarios for those
worlds.

36 Chapter 4. Holodeck Packages

https://github.com/BYU-PCCL/holodeck-engine

Holodeck Documentation, Release 0.3.1

A package file is platform specific, since it contains a compiled binary of Holodeck.

4.3.1 Package Contents

The .zip file must contain the following elements

1. A build of holodeck-engine

2. A config.json file that defines the worlds present in the package

3. Scenario configs for those worlds

4.3.2 Package Structure

The package.zip contains a config.json file at the root of the archive, as well as all of the scenarios for every world
included in the package. The scenario files must follow the format {WorldName}-{ScenarioName}.json.

+package.zip
+-- config.json
+-- WorldName-ScenarioName.json
+-- LinuxNoEditor

+ UE4 build output

4.3.3 config.json

This configuration file contains the package-level configuration. Below is the format the config file is expected to
follow:

config.json:

{
"name": "{package_name}",
"platform": "{Linux | Windows}",
"version": "{package_version}",
"path" : "{path to binary within the archive}",
"worlds": [

{
"name": "{world_name}",
"pre_start_steps": 2,

}
]

}

The "pre_start_steps" attribute for a world defines how many ticks should occur before starting the simulation,
to work around world idiosyncrasies.

4.4 Scenarios

4.4.1 What is a scenario?

A scenario tells Holodeck which world to load, which agents to place in the world, and which sensors they need.

It defines:

4.4. Scenarios 37

https://github.com/BYU-PCCL/holodeck-engine

Holodeck Documentation, Release 0.3.1

• Which world to load

• Agent Definitions

– What type of agent they are

– Where they are

– What sensors they have

• Tasks

– Which task

– Which agents play which role in the task

Tip: You can think of scenarios like a map or gametype variant from Halo: the world or map itself doesn’t change,
but the things in the world and your objective can change.

Scenarios allow the same world to be used for many different purposes, and allows you to extend and customize the
scenarios we provide to suit your needs without repackaging the engine.

When you call holodeck.make() to create an environment, you pass in the name of a scenario, eg holodeck.
make("UrbanCity-Follow"). This tells Holodeck which world to load and where to place agents.

4.4.2 Scenario File Format

Scenario .json files are distributed in packages (see Package Contents), and must be named
{WorldName}-{ScenarioName}.json. By default they are stored in the worlds/{PackageName}
directory, but they can be loaded from a Python dictionary as well.

Scenario File

{
"name": "{Scenario Name}",
"world": "{world it is associated with}",
"agents":[

"array of agent objects"
],
"weather": {

"hour": 12,
"type": "'sunny' or 'cloudy' or 'rain'",
"fog_density": 0,
"day_cycle_length": 86400

},
"window_width": 1280,
"window_height": 720

}

window_width/height control the size of the window opened when an environment is created. For more infor-
mation about weather options, see Configuring Weather and Time.

Note: The first agent in the agents array is the “main agent”

38 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

Agent objects

{
"agent_name": "uav0",
"agent_type": "{agent types}",
"sensors": [

"array of sensor objects"
],
"control_scheme": "{control scheme type}",
"location": [1.0, 2.0, 3.0],
"rotation": [1.0, 2.0, 3.0],
"location_randomization": [1, 2, 3],
"rotation_randomization": [10, 10, 10]

}

Note: Holodeck coordinates are left handed in meters. See Coordinate System

Location Randomization

location_randomization and rotation_randomization are optional. If provided, the agent’s start lo-
cation and/or rotation will vary by a random amount between the negative and the positive values of the provided
randomization values.

The location value is measured in meters, in the format [dx, dy, dz] and the rotation is [roll, pitch,
yaw].

Agent Types

Here are valid agent_type s:

Agent Type String in agent_type
AndroidAgent AndroidAgent
HandAgent HandAgent
TurtleAgent TurtleAgent
NavAgent NavAgent
SphereAgent SphereAgent
UavAgent UAV

Control Schemes

Control schemes are represented as an integer. For valid values and a description of how each scheme works, see the
documentation pages for each agent.

Sensor Objects

{
"sensor_type": "RGBCamera",
"sensor_name": "FrontCamera",

(continues on next page)

4.4. Scenarios 39

Holodeck Documentation, Release 0.3.1

(continued from previous page)

"location": [1.0, 2.0, 3.0],
"rotation": [1.0, 2.0, 3.0],
"socket": "socket name or \"\"",
"configuration": {

}
}

Sensors have a couple options for placement.

1. Provide a socket name

This will place the sensor in the given socket

{
"sensor_type": "RGBCamera",
"socket": "CameraSocket"

}

2. Provide a socket and a location/rotation

The sensor will be placed offset to the socket by the location and rotation

{
"sensor_type": "RGBCamera",
"location": [1.0, 2.0, 3.0],
"socket": "CameraSocket"

}

3. Provide just a location/rotation

The sensor will be placed at the given coordinates, offset from the root of the agent.

{
"sensor_type": "RGBCamera",
"location": [1.0, 2.0, 3.0]

}

The only keys that are required in a sensor object is "sensor_type", the rest will default as shown below

{
"sensor_name": "sensor_type",
"location": [0, 0, 0],
"rotation": [0, 0, 0],
"socket": "",
"configuration": {}

}

Configuration Block

The contents of the configuration block are sensor-specific. That block is passed verbatim to the sensor itself,
which parses it.

For example, the docstring for RGBCamera states that it accepts CaptureWidth and CaptureHeight parame-
ters, so an example sensor configuration would be:

40 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

{
"sensor_name": "RBGCamera",
"socket": "CameraSocket",
"configuration": {

"CaptureHeight": 1920,
"CaptureWidth": 1080

}
}

4.5 Tasks

Below are the different tasks available for use in Holodeck.

4.5.1 Distance Task

The distance tasks calculates a dense distance based reward. The agent will receive a reward of 1 as it crosses intervals
that are a certain distance away from a goal location. It can be configured to have the agent either maximize or
minimize the distance from a location, actor or the agent’s starting location.

Configuration

Each of the following parameters can be placed in the configuration field for a distance task sensor (see scenario files.)

DistanceActor

The reward is calculated by measuring the distance between the distance actor and the goal actor/location. If left
empty, it will default to the task’s agent.

• "DistanceActor": "name-of-actor"

Goal

The distance between the goal actor/location and the distance actor is used to calculate the reward. Only the GoalActor
or GoalLocation can be set, not both.

"GoalActor": "name-of-actor"

or

"GoalLocation": [1.0, 2.0, 3.0]

Interval

The interval controls the distance an agent must cover before it receives a reward.

"Interval": 5

4.5. Tasks 41

Holodeck Documentation, Release 0.3.1

GoalDistance

This distance is used to determine if the task has reached its terminal state and the agent has travelled far enough away.

"GoalDistance": 1

MaximizeDistance

Boolean value to indicate if the distance should be maximized or minimized. If left empty, it defaults to false.

"MaximizeDistance": true

3dDistance

Boolean value to indicate whether to incorporate height into the distance calculation. If false, it will only use the xy
values and ignore vertical distance. If left empty, it defaults to false.

"3dDistance": true

Example

{
"DistanceActor": "baseball",
"GoalActor": "target",
"Interval": 5,
"GoalDistance": 0.2,
"MaximizeDistance": false

}

4.5.2 Location Task

Calculates a sparse distance reward based on the distance to a location or an actor. Can maximize or minimize a
distance. A reward of 1 is only given only if the agent reaches the goal target within the goal distance.

Configuration

Each of the following parameters can be placed in the configuration field for a location task sensor (see scenario files.)

LocationActor

The reward is given based on the distance between this actor and the goal target. Defaults to the task’s agent.

"LocationActor": "name-of-actor"

GoalTarget

The Location task needs an actor or a location to use in the distance calculations.

"GoalActor": "name-of-actor"

42 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

or

"GoalLocation": [3.14, 2.71, 117]

GoalDistance

This is the distance from the goal target the LocationActor must be to get a reward and terminal.

"GoalDistance": 1024.0

NegativeReward

A boolean representing whether reaching the goal target returns 1 or -1. Defaults to false.

"NegativeReward": false

HasTerminal

A boolean representing whether reaching the goal target returns a terminal value or not. Defaults to false.

"HasTerminal": true

Example

{
"LocationActor": "golf-ball",
"GoalActor": "cup",
"GoalDistance": 1024.0,
"NegativeReward": false,
"HasTerminal": true

}

4.5.3 Follow Task

The follow task calculates a reward based on the distance to an actor and optionally if the agent has line of sight to it.

If OnlyWithinSight is true, the reward is set to the percent distance covered from the MinDistance to the ToFollow
target if the angle from the agent to target is less than FOVRadians and is there is nothing blocking the agent’s line of
sight. Otherwise the reward is 0.

If OnlyWithinSight is false, then the reward is set to the the percent distance covered from the MinDistance to the
ToFollow Actor.

The reward will be a value 0 to 100

Configuration

Each of the following parameters can be placed in the configuration field for a follow task sensor (see scenario files.)

4.5. Tasks 43

Holodeck Documentation, Release 0.3.1

ToFollow

Name of the actor to follow.

"ToFollow": "name-of-actor"

OnlyWithinSight

Boolean value indicating if the reward should be calculated only when the actor to follow is within the agent’s field of
view.

"OnlyWithinSight": true

FOVRadians

Float value, the field of view of the agent, in radians. See above how this is used in the reward calculation.

"FOVRadians": 1.5

MinDistance

Float value, used to specify the minimum distance

"MinDistance": 512.0

FollowSocket

The socket of the ToFollow actor the agent needs to see if OnlyWithinSight is true. If left empty, it defaults to the
actor’s location.

"FollowSocket": "head"

Example

{
"ToFollow": "person",
"OnlyWithinSight": true,
"FOVRadains": 2.0,
"MinDistance": 1024.0,
"FollowSocket": "head"

}

4.5.4 Avoid Task

The avoid task calculates a reward based on the distance between the agent and an actor to avoid, with an option to
incorporate whether the actor to avoid can see the agent.

If OnlyWithinSight is false, then the reward is set to the the percent distance covered from the MinDistance to
the ToAvoid Actor. The closer ToAvoid is, the lower the reward.

44 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

If OnlyWithinSight is true, the reward calculation is the same as above if the angle from the ToAvoid to the
agent is less than FOVRadians and is there is nothing blocking the ToAvoid’s line of sight. Otherwise the reward is
100.

The reward will be a value 0 to 100

Configuration

Each of the following parameters can be placed in the configuration field for an avoid task sensor (see scenario files.)

ToAvoid

Name of the actor to avoid.

"ToAvoid": "name-of-actor"

OnlyWithinSight

Boolean value indicating if the reward should be calculated only when the agent is within the ToAvoid actor’s field of
view.

"OnlyWithinSight": true

FOVRadians

Float value, the field of view of the agent, in radians. See above how this is used in the reward calculation.

"FOVRadians": 1.5

MinDistance

Float value, used to specify the minimum distance.

"MinDistance": 512.0

StartSocket

The socket of the ToAvoid actor that its vision is calculated from.

"StartSocket": "head"

EndSocket

The socket of the agent that the ToAvoid actor needs to see for the vision calculation.

"EndSocket": "body"

4.5. Tasks 45

Holodeck Documentation, Release 0.3.1

Example

{
"ToAvoid": "hunter",
"OnlyWithinSight": true,
"FOVRadains": 2.0,
"MinDistance": 1000.0,
"StartSocket": "head",
"EndSocket": "body"

}

4.5.5 Cup Game Task

Calculates reward based on whether the correct cup is touched and whether the ball is touched.

• A reward of 1 is given for one tick if the correct cup is touched and no other cups are touched.

• A reward of 2 and terminal is given when the ball itself is touched and no incorrect cups are touched.

• A reward of -1 and terminal is given when an incorrect cup is touched.

The cup game task only works in the CupGame world in the dexterity package. The game will not start if a cup game
task is not added to an agent.

Configuration

Each of the following parameters can be placed in the configuration field for a cup game task sensor (see scenario
files.)

The configuration can also be set programmatically by calling start_game() if the sensor has no configuration
block. That configuration will reset after every call to reset().

Speed Multiplier

1.0 is the base speed, cups will rotate faster with a higher multiplier. It is best to keep values between 1 and 10.

"Speed": 2.4

NumShuffles

Number of times the cups are exchanged.

"NumShuffles": 10

Seed

Seed for the RNG used to shuffle the cups. Providing a fixed seed will result in a deterministic set of exchanges, which
may be useful for training.

If left empty or not defined, the cups will rotate using a randomly generated seed.

"Seed": 1

46 Chapter 4. Holodeck Packages

Holodeck Documentation, Release 0.3.1

Example

{
"Speed": 5.0,
"NumShuffles": 1,
"Seed": 0

}

4.5.6 Clean Up Task

Initializes the clean up task in the world. This task only works in the CleanUp world in the Dexterity package where
there is a trash can in the middle of the map.

Trash will spawn randomly around the trash can when the task starts. A clean up task must be added to an agent for
the task to start.

The reward is based on the number of pieces of trash placed in the trash can. For each piece of trash added to the can,
a reward of 1 is given. For each piece of trash removed, a reward of -1 is given. If all the trash is in the can, terminal
is given.

If UseTable is true a table will spawn next to the trash can, all trash will be on the table, and the trash can lid will
be absent. This makes the task significantly easier. If false, all trash will spawn on the ground.

Configuration

Each of the following parameters can be placed in the configuration field for a clean up task sensor (see scenario files.)

The configuration can also be set programmatically by calling start_task(). Do not call if the config file has a
configuration block. That configuration will reset after every call to reset().

NumTrash

Int representing the amount of trash to spawn around the trash can.

"NumTrash": 6

UseTable

Boolean value representing whether to use the simpler table task configuration.

"UseTable": false

Example

{
"NumTrash": 5,
"UseTable": false

}

These tasks can be configured and used in scenario files.

4.5. Tasks 47

Holodeck Documentation, Release 0.3.1

4.6 Package Installation Location

Holodeck packages are by default saved in the current user profile, depending on the platform.

Platform Location
Linux ~/.local/share/holodeck/{holodeck_version}/worlds/
Windows %USERPROFILE%\AppData\Local\holodeck\{holodeck_version}\worlds

Note that the packages are saved in different subfolders based on the version of Holodeck. This allows multiple
versions of Holodeck to coexist, without causing version incompatibility conflicts.

This is the path returned by holodeck.util.get_holodeck_path()

Each folder inside the worlds folder is considered a seperate package, so it must match the format of the archive
described in Package Contents.

4.6.1 Overriding Location

The environment variable HOLODECKPATH can be set to override the default location given above.

Caution: If HOLODECKPATH is used, it will override this version partitioning, so ensure that HOLODECKPATH
only points to packages that are compatible with your version of Holodeck.

48 Chapter 4. Holodeck Packages

CHAPTER 5

Holodeck Agents

Documentation on specific agents available in Holodeck:

5.1 AndroidAgent

5.1.1 Images

5.1.2 Description

An android agent that can be controlled via torques supplied to its joints. See AndroidAgent for more details.

5.1.3 Control Schemes

Android Direct Torques (0) A 94 dimensional vector of continuous values representing torques to be applied at each
joint. See Android Joints below for a description of the joint indicies.

49

Holodeck Documentation, Release 0.3.1

Android Max Scaled Torques (1) A 94 dimensional vector of continuous values between [-1, 1] representing the
scaled torques to be applied at each joint. See Android Joints below for a description of the joint indicies.

1 represents the maximum forward torque and -1 the maximum torque in the opposite direction.

5.1.4 Android Joints

The control scheme for the android and the JointRotationSensor use a 94 length vector refer to 48 joints.

To gain insight into these joints, refer to the table below, or use the joint_ind() helper method to convert a name
(eg spine_02) to and index (6).

Note: Note that the index given is the start index for the joint, see the section header for how many values after this
index each joint has.

Example: neck_01 starts at index 3, and has [swing1, swing2, twist] , so index 3 in the 94 length vector
corresponds to swing1, 4 corresponds to swing2, and 5 corresponds to twist for neck_01.

Returned in the following order:

Head, Spine, and Arm joints
Each has [swing1, swing2, twist]
0 head
3 neck_01
6 spine_02
9 spine_01
12 upperarm_l
15 lowerarm_l
18 hand_l
21 upperarm_r
24 lowerarm_r
27 hand_r
Leg Joints
Each has [swing1, swing2, twist]
30 thigh_l
33 calf_l
36 foot_l
39 ball_l
42 thigh_r
45 calf_r
48 foot_r
51 ball_r
First joint of each finger
Has only [swing1, swing2]
54 thumb_01_l
56 index_01_l
58 middle_01_l
60 ring_01_l
62 pinky_01_l
64 thumb_01_r
66 index_01_r

Continued on next page

50 Chapter 5. Holodeck Agents

Holodeck Documentation, Release 0.3.1

Table 1 – continued from previous page
68 middle_01_r
70 ring_01_r
72 pinky_01_r
Second joint of each finger
Has only [swing1]
74 thumb_02_l
75 index_02_l
76 middle_02_l
77 ring_02_l
78 pinky_02_l
79 thumb_02_r
80 index_02_r
81 middle_02_r
82 ring_02_r
83 pinky_02_r
Third joint of each finger
Has only [swing1]
84 thumb_03_l
85 index_03_l
86 middle_03_l
87 ring_03_l
88 pinky_03_l
89 thumb_03_r
90 index_03_r
91 middle_03_r
92 ring_03_r
93 pinky_03_r

5.1.5 AndroidAgent Bones

The RelativeSkeletalPositionSensor returns an array with four entries for each bone listed below.

Index Bone Name
0 pelvis
4 spine_01
8 spine_02
12 spine_03
16 clavicle_l
20 upperarm_l
24 lowerarm_l
28 hand_l
32 index_01_l
36 index_02_l
40 index_03_l
44 middle_01_l
48 middle_02_l
52 middle_03_l
56 pinky_01_l
60 pinky_02_l

Continued on next page

5.1. AndroidAgent 51

Holodeck Documentation, Release 0.3.1

Table 2 – continued from previous page
Index Bone Name
64 pinky_03_l
68 ring_01_l
72 ring_02_l
76 ring_03_l
80 thumb_01_l
84 thumb_02_l
88 thumb_03_l
92 lowerarm_twist_01_l
96 upperarm_twist_01_l
100 clavicle_r
104 upperarm_r
108 lowerarm_r
112 hand_r
116 index_01_r
120 index_02_r
124 index_03_r
128 middle_01_r
132 middle_02_r
136 middle_03_r
140 pinky_01_r
144 pinky_02_r
148 pinky_03_r
152 ring_01_r
156 ring_02_r
160 ring_03_r
164 thumb_01_r
168 thumb_02_r
172 thumb_03_r
176 lowerarm_twist_01_r
180 upperarm_twist_01_r
184 neck_01
188 head
192 thigh_l
196 calf_l
200 calf_twist_01_l
204 foot_l
208 ball_l
212 thigh_twist_01_l
216 thigh_r
220 calf_r
224 calf_twist_01_r
228 foot_r
232 ball_r
236 thigh_twist_01_r

5.1.6 Sockets

• CameraSocket located in the middle of the android’s face

• Viewport located behind the agent

52 Chapter 5. Holodeck Agents

Holodeck Documentation, Release 0.3.1

• All of the joints may be used as sockets. See Android Joints.

5.2 HandAgent

5.2.1 Images

5.2.2 Description

A floating hand agent that can be controlled by applying torques to joints and moved around in three dimensions.

5.2.3 Control Schemes

• Raw Joint Torques (0)

23 length vector of raw torques to pass into the joints, in the order listed beow in HandAgent Joints

• Scaled Joint Torques (1)

23 length vector of scaled torques, between -1 and 1. The strength finger each joint is scaled depending on the
weight of the bone and if it is a finger or not. 1 represents the maximum power in the forward direction

• Scaled Joint Torques + Floating (2)

Same as above, but the vector is of length 26, with the last three values representing the amount of movement in
the [x, y, z] directions (see Coordinate System), with a maximum of 0.5 meters of freedom.

The last coordinates allow the HandAgent to float around.

5.2.4 HandAgent Joints

The control scheme for the HandAgent and the JointRotationSensor use a 94 length vector refer to 48 joints.

To gain insight into these joints, refer to the table below.

Note: Note that the index given is the start index for the joint, see the section header for how many values after this
index each joint has.

Example: hand_r starts at index 0, and has [swing1, swing2, twist], so index 0 in the vector corresponds
to swing1, 1 corresponds to swing2, and 2 corresponds to twist for hand_r

5.2. HandAgent 53

Holodeck Documentation, Release 0.3.1

Returned in the following order:

Arm joints
Each has [swing1, swing2, twist]

0 hand_r
First joint of each finger
Has only [swing1, swing2]
64 thumb_01_r
66 index_01_r
68 middle_01_r
70 ring_01_r
72 pinky_01_r
Second joint of each finger
Has only [swing1]
79 thumb_02_r
80 index_02_r
81 middle_02_r
82 ring_02_r
83 pinky_02_r
Third joint of each finger
Has only [swing1]
89 thumb_03_r
90 index_03_r
91 middle_03_r
92 ring_03_r
93 pinky_03_r

5.2.5 HandAgent Bones

The RelativeSkeletalPositionSensor returns an array with four entries for each of the 17 bones listed
below.

Index Bone Name
0 lowerarm_r
4 hand_r
8 index_01_r
12 index_02_r
16 index_03_r
20 middle_01_r
24 middle_02_r
28 middle_03_r
32 pinky_01_r
36 pinky_02_r
40 pinky_03_r
44 ring_01_r
48 ring_02_r
52 ring_03_r
56 thumb_01_r
60 thumb_02_r
64 thumb_03_r

54 Chapter 5. Holodeck Agents

Holodeck Documentation, Release 0.3.1

5.2.6 Sockets

• CameraSocket located behind and above the wrist

• Viewport located looking at the agent from the side

• All of the joints may be used as sockets. See HandAgent Joints

5.3 NavAgent

5.3.1 Images

See holodeck.agents.NavAgent for more details.

5.3.2 Description

The NavAgent is not meant for training, it is meant to be used as an objective in tasks. Given world coordinates, it
will use use Unreal’s AI system to attempt to intelligently navigate towards those coordinates.

5.3.3 Control Schemes

Nav Target Location (‘‘0‘‘) A 3-length floating point vector used to specify the x, y and z coordinates for the agent
to navigate to.

5.3.4 Sockets

None.

5.4 SphereAgent

5.4.1 Images

5.3. NavAgent 55

Holodeck Documentation, Release 0.3.1

5.4.2 Description

A basic sphere robot that moves along a plane. The SphereAgent does not have physics - it simply computes its next
location and teleports there, as compared to the TurtleAgent which has mass and momentum.

See SphereAgent for more details.

5.4.3 Control Schemes

Sphere discrete (0) A single-length integer vector that accepts 1 of four possible numbers; 0: move forward, 1: move
backward, 2: turn right, 3: turn left

Sphere continuous (1) A 2-length floating point vector used to specify the agent’s forward speed (index 0) and
rotation speed (index 1).

5.4.4 Sockets

• CameraSocket located at the front of the sphere body

• Viewport located behind the agent

5.5 TurtleAgent

5.5.1 Description

A simple turtle-bot agent with an arrow pointing forwards. Its radius is approximately 25cm and is approximately
10cm high.

The TurtleAgent moves when forces are applied to it - so it has momentum and mass, compared to the SphereAgent
which teleports around. The TurtleAgent is subject to gravity and can climb ramps and slopes.

See TurtleAgent for more details.

56 Chapter 5. Holodeck Agents

Holodeck Documentation, Release 0.3.1

5.5.2 Control Schemes

Sphere continuous (1) A 2-length floating point vector used to specify the agent’s forward force (index 0) and rota-
tion force (index 1).

5.5.3 Sockets

• CameraSocket located at the front of the body

• Viewport located behind the agent

5.6 UavAgent

5.6.1 Images

5.6.2 Description

A quadcopter UAV agent.

See the UavAgent class.

5.6.3 Control Schemes

UAV Torques (‘‘0‘‘) A 4-length floating point vector used to specify the pitch torque, roll torque, yaw torque and
thrust with indices 0, 1, 2 and 3 respectively.

UAV Roll / Pitch / Yaw targets(‘‘1‘‘) A 4-length floating point vector used to specify the pitch, roll, yaw, and altitude
targets. The values are specified in indices 0, 1, 2, and 3 respectively.

5.6. UavAgent 57

Holodeck Documentation, Release 0.3.1

5.6.4 Sockets

• CameraSocket located underneath the uav body

• Viewport located behind the agent

58 Chapter 5. Holodeck Agents

CHAPTER 6

Changelog

6.1 Holodeck 0.3.1

04/02/2020

More bug fixes, improvements, and even a few new features.

6.1.1 Highlights

• Holodeck now requires Python 3.5 or greater

• Added AbuseSensor and RangeFinderSensor

• Added programmatic spawning of props, see spawn_prop()

• Weather can be specified in scenarios, see Configuring Weather and Time.

6.1.2 New Features

• Added optional start location and rotation randomization on reset(). See Location Randomization. (#295)

• spawn_prop() now allows basic objects (spheres, cubes, cylinders) to be spawned at arbitrary locations in
the environment. (#397)

• Distance Task by default now calculates the distance to the objective along the XY plane, to discourage flying
straight up. (#360)

If the full 3D distance is desired, set the 3dDistance flag in the configuration block of the Distance Task.
(#360)

• Added AbuseSensor, which senses if an agent has been abused. Agents experience abuse when they fall
from a high distance or other agent-specific situations. (#262)

• Environment weather/time can be optionally configured with Scenarios (#263). See Configuring Weather and
Time.

59

https://github.com/BYU-PCCL/holodeck/issues/295
https://github.com/BYU-PCCL/holodeck/issues/397
https://github.com/BYU-PCCL/holodeck/issues/360
https://github.com/BYU-PCCL/holodeck/issues/360
https://github.com/BYU-PCCL/holodeck/issues/262
https://github.com/BYU-PCCL/holodeck/issues/263

Holodeck Documentation, Release 0.3.1

• set_weather() now has sunny weather available, which allows you to revert back to the default weather.
(#376)

• Added RangeFinderSensor which calculates the distance from the sensor to the first collision in the envi-
ronment. The sensor can send out multiple rays in a circle if desired.

6.1.3 Changes

• Holodeck now requires Python >= 3.5 (#389)

• Moved weather/time methods from HolodeckEnvironment to new WeatherController (#196, #263)

• Calling send_world_command() for an environment without the given command will now cause the envi-
ronment to exit rather than fail silently. This includes all relevant methods in the WeatherController.

• Removed the ability to toggle sensors during runtime with the removal of SetSensorEnabledCommand,
set_sensor_enabled(), and set_sensor_enable(). To specify which sensors to include, use Cus-
tom Scenario Configurations. (#268)

• Improved Docker images. See Docker Installation. (#347)

– Tests can now be run inside of Docker containers

– All images are based on Ubuntu 18.04 now

– Added image for Dexterity package, and an image with every package

• Every control scheme now has limits on inputs (ie maximum or minimum thrust) (#369)

See get_high() and get_low() to read them.

• Scenario Changes:

– EuropeanForest-MaxDistance, RedwoodForest-MaxDistance, UrbanCity-MaxDistance: Added
AbuseSensor

– InfiniteForest-MaxDistance: Added AbuseSensor and RangeFinderSensor.

– MazeWorld-FinishMazeSphere: Added RangeFinderSensor

6.1.4 Bug Fixes

• Fixed UAV blades rotating incorrectly (thanks @sethmnielsen!) (#331)

• Fixed some posix_ipc.BusyError: Semaphore is busy errors on Linux systems when creating
a scenario (#285)

• Fixed a bug where the UE4 editor crashes when an agent is manually added to a level (#361)

• Fixed crash when manually disabling viewport when it would’ve been disabled anyway. (#378)

• Fixed SphereAgent having the incorrect default control scheme (#350)

6.2 Holodeck 0.3.0

11/02/2019

This is a content release focused on improving the AndroidAgent and adding more scenarios and tasks for it. We also
added a new floating hand agent to provide a simpler agent that can do many of the dexterity tasks.

60 Chapter 6. Changelog

https://github.com/BYU-PCCL/holodeck/issues/376
https://github.com/BYU-PCCL/holodeck/issues/389
https://github.com/BYU-PCCL/holodeck/issues/196
https://github.com/BYU-PCCL/holodeck/issues/263
https://github.com/BYU-PCCL/holodeck/issues/268
https://github.com/BYU-PCCL/holodeck/issues/347
https://github.com/BYU-PCCL/holodeck/issues/369
https://github.com/BYU-PCCL/holodeck/issues/331
https://github.com/BYU-PCCL/holodeck/issues/285
https://github.com/BYU-PCCL/holodeck/issues/361
https://github.com/BYU-PCCL/holodeck/issues/378
https://github.com/BYU-PCCL/holodeck/issues/350

Holodeck Documentation, Release 0.3.1

6.2.1 Highlights

• Added dexterity-package with new worlds and scenarios (see below for comprehensive listing)

• Added Clean Up Task and Cup Game Task tasks

• Added HandAgent

6.2.2 New Features

• Added the dexterity-package with new worlds and scenarios:

– Playroom

* Playroom-Android

* Playroom-Hand

* Playroom-StandFromGround

* Playroom-StandFromStanding

– Clean Up (#290)

* CleanUp-GroundAndroid

* CleanUp-GroundHand

* CleanUp-TableAndroid

* CleanUp-TableHand

– CupGame (#288)

* CupGame-Custom

* CupGame-Easy

* CupGame-Hard

– Grip

* Grip-LiftBottle

• Added the HandAgent - a simplified Android hand that can float around (#287)

– HandAgent can be used with the same Android-specific sensors (JointRotationSensor,
PressureSensor, RelativeSkeletalPositionSensor)

• Added new tasks sensors for specific worlds

– Cup Game Task (#318)

– Clean Up Task (#321)

• Packages can be installed directly from a URL (see install) (#129)

• Agent sensors can now be rotated at run time with rotate(). (#305)

• The config files can now specify whether an agent should be spawned (#303)

• Pressing h now shows the coordinates of the agent the viewport is following or the coordinates of the camera if
it is detached (see Hotkeys). (#253)

• The viewport now follows the main agent as specified in the config file by default. (#238)

• You can now specify the number of ticks you want to occur in the tick() and the step() methods, (#313)

6.2. Holodeck 0.3.0 61

https://github.com/BYU-PCCL/holodeck/issues/290
https://github.com/BYU-PCCL/holodeck/issues/288
https://github.com/BYU-PCCL/holodeck/issues/287
https://github.com/BYU-PCCL/holodeck/pull/318
https://github.com/BYU-PCCL/holodeck/pull/321
https://github.com/BYU-PCCL/holodeck/issues/129
https://github.com/BYU-PCCL/holodeck/issues/305
https://github.com/BYU-PCCL/holodeck/pull/303
https://github.com/BYU-PCCL/holodeck/issues/253
https://github.com/BYU-PCCL/holodeck/issues/238
https://github.com/BYU-PCCL/holodeck/pull/313

Holodeck Documentation, Release 0.3.1

6.2.3 Changes

• Increased the AndroidAgent’s strength in the ANDROID_MAX_SCALED_TORQUES control scheme.

– Previously the AndroidAgent didn’t have enough strength to even move its legs.

– Strength was approximately doubled (See JointMaxTorqueControlScheme.h)

• Location sensor now returns the location of the sensor, not just the agent (#306)

• Updated to Unreal Engine 4.22 (#241)

• TurtleAgent is now subject to gravity, has increased power, is black, and slightly smaller. (#217)

• Removed the set_state() and teleport() methods from the HolodeckEnvironment class.

These methods were duplicates of the corresponding methods on the HolodeckAgent class. See the linked
issue for migration suggestions (#311)

• Removed the get/set_ticks_per_capture methods from the HolodeckAgent and
HolodeckEnvironment classes, moved set_ticks_per_capture() method to the RGBCamera
class. (#197)

• Viewport will now follow the main agent by default. (#238)

• Viewport will not be rendered when it is hidden (show_viewport param in HolodeckEnvironment,
Linux only) (#283)

6.2.4 Bug Fixes

• Fixed the RelativeSkeletalPositionSensor.

– This sensor returns the location of bones, not sensors. Since there are more bones than joints, previously
it returned them in a completely different order than expected.

– Now the order for this sensor is explicitly specified in AndroidAgent Bones and HandAgent Bones.

– Previously on the first tick it would return uninitialized garbage on the first tick

• Fixed being unable to spawn the TurtleAgent. (#308)

• Fixed the set_physics_state() method. (#311)

• Fixed agent spawn rotations being in the incorrect order. Fixed the documentation that specified the incorrect
order as well (Rotations) (#309)

• Fixed being unable to set the ticks per capture of a camera if it was not named RGBCamera. (#197)

• Fixed being unable to make a Holodeck window larger than the current screen resolution (#301)

• Fixed being unable to configure ViewportCapture sensor. (#301)

6.2.5 Known Issues

• The TurtleAgent does not move consistently between Linux and Windows. (#336)

6.3 Holodeck 0.2.2

06/20/2019

This is mostly a maintenance release focused on cleaning up bugs that were unresolved in 0.2.1

62 Chapter 6. Changelog

https://github.com/BYU-PCCL/holodeck-engine/blob/develop/Source/Holodeck/Agents/Public/JointMaxTorqueControlScheme.h#L50
https://github.com/BYU-PCCL/holodeck/issues/306
https://github.com/BYU-PCCL/holodeck/issues/241
https://github.com/BYU-PCCL/holodeck/issues/217
https://github.com/BYU-PCCL/holodeck/issues/311
https://github.com/BYU-PCCL/holodeck/issues/197
https://github.com/BYU-PCCL/holodeck/issues/238
https://github.com/BYU-PCCL/holodeck/issues/283
https://github.com/BYU-PCCL/holodeck/issues/308
https://github.com/BYU-PCCL/holodeck/issues/311
https://github.com/BYU-PCCL/holodeck/issues/309
https://github.com/BYU-PCCL/holodeck/issues/197
https://github.com/BYU-PCCL/holodeck/issues/301
https://github.com/BYU-PCCL/holodeck/issues/301
https://github.com/BYU-PCCL/holodeck/issues/336

Holodeck Documentation, Release 0.3.1

6.3.1 New Features

• When freecamming around, pressing shift moves the camera faster. (#99)

• Agents can have a rotation specified in the scenario config files (#209)

• Custom scenarios can be made with dictionaries as well as json files. See Custom Scenario Configurations
(#275)

• Documented how to improve Holodeck performance. See Improving Holodeck Performance (#109)

6.3.2 Bug Fixes

• Fixed info() method (#182)

• Fixed command buffer not being reset after calling reset(). (#254)

• Fixed rain not being very visible on Linux (#235)

• Fixed teleport command not working on the Android (#209)

• Fixed RGBCamera intermittently returning a matrix of zeros after resetting (#271)

• Fixed EXCEPTION_ACCESS_VIOLATION on Windows after creating an environment (#270)

• Fixed MazeWorld-FinishMazeSphere task not going terminal when task was finished.

– Added a post with a golden ball on top to the end of the maze, this is now the tasks’s target

6.4 Holodeck 0.2.1

05/20/2019

This release of Holodeck is focused on polishing existing features and allowing worlds to be customized more.

This summer we are planning on adding much more content (worlds, agents, etc).

6.4.1 Highlights

• Added Scenarios to allow worlds to be more flexible and customizable

• Documentation has been greatly expanded

6.4.2 New Features

• Added expanded teleport functionality (#128)

• Add ticks per capture command for RGB Camera (#127)

• Add __enter__ and __exit__ methods to HolodeckEnvironment (#125)

• Add option to run headless on Linux (set_render_quality() on HolodeckEnvironment) (#135)

• Add ability to adjust rendering options (set_render_quality()) (#136)

• Add environment flag that allows state to be returned as copied object instead of reference (#151)

• Packages are not hard-coded on server, binaries are saved in version-specific folder to prevent crosstalk (#188)

• Sensors can be disabled to improve performance (#152)

6.4. Holodeck 0.2.1 63

https://github.com/BYU-PCCL/holodeck/issues/99
https://github.com/BYU-PCCL/holodeck/issues/209
https://github.com/BYU-PCCL/holodeck/issues/275
https://github.com/BYU-PCCL/holodeck/issues/109
https://github.com/BYU-PCCL/holodeck/issues/182
https://github.com/BYU-PCCL/holodeck/issues/254
https://github.com/BYU-PCCL/holodeck/issues/235
https://github.com/BYU-PCCL/holodeck/issues/209
https://github.com/BYU-PCCL/holodeck/issues/271
https://github.com/BYU-PCCL/holodeck/issues/270
https://github.com/BYU-PCCL/holodeck/issues/128
https://github.com/BYU-PCCL/holodeck/issues/127
https://github.com/BYU-PCCL/holodeck/issues/125
https://github.com/BYU-PCCL/holodeck/issues/135
https://github.com/BYU-PCCL/holodeck/issues/136
https://github.com/BYU-PCCL/holodeck/issues/151
https://github.com/BYU-PCCL/holodeck/pull/188
https://github.com/BYU-PCCL/holodeck/pull/152

Holodeck Documentation, Release 0.3.1

• Add the ability to draw points, lines, arrows and boxes in the worlds (#144)

• Added new tasks for use with scenarios

• Added new scaled torque control scheme to the Android (#150)

6.4.3 Bug Fixes

• Fixed mmap length is greater than filesize error on startup (#115)

• Make all unit conversions on holodeck-engine side (#162)

• Fix multi-agent example (thanks bradyz!) (#118)

• Make sure reset() called before tick() and act() (#156)

• And many smaller bugs!

6.5 Holodeck 0.1.0

Initial public release.

64 Chapter 6. Changelog

https://github.com/BYU-PCCL/holodeck/pull/144
https://github.com/BYU-PCCL/holodeck/pull/144
https://github.com/BYU-PCCL/holodeck/issues/115
https://github.com/BYU-PCCL/holodeck/issues/162
https://github.com/BYU-PCCL/holodeck/issues/118
https://github.com/BYU-PCCL/holodeck/issues/156

CHAPTER 7

Holodeck

Module containing high level interface for loading environments.

Classes

GL_VERSION OpenGL Version enum.

Functions

make([scenario_name, scenario_cfg, . . .]) Creates a Holodeck environment

class holodeck.holodeck.GL_VERSION
OpenGL Version enum.

OPENGL3
The value for OpenGL3.

Type int

OPENGL4
The value for OpenGL4.

Type int

holodeck.holodeck.make(scenario_name=”, scenario_cfg=None, gl_version=4, window_res=None,
verbose=False, show_viewport=True, ticks_per_sec=30, copy_state=True)

Creates a Holodeck environment

Parameters

• world_name (str) – The name of the world to load as an environment. Must match the
name of a world in an installed package.

• scenario_cfg (dict) – Dictionary containing scenario configuration, instead of load-
ing a scenario from the installed packages. Dictionary should match the format of the JSON
configuration files

65

Holodeck Documentation, Release 0.3.1

• gl_version (int, optional) – The OpenGL version to use (Linux only). Defaults to
GL_VERSION.OPENGL4.

• window_res ((int, int), optional) – The (height, width) to load the engine window at.
Overrides the (optional) resolution in the scenario config file

• verbose (bool, optional) – Whether to run in verbose mode. Defaults to False.

• show_viewport (bool, optional) – If the viewport window should be shown on-screen
(Linux only). Defaults to True

• ticks_per_sec (int, optional) – The number of frame ticks per unreal seconds. De-
faults to 30.

• copy_state (bool, optional) – If the state should be copied or passed as a reference
when returned. Defaults to True

Returns

A holodeck environment instantiated with all the settings necessary for the specified world,
and other supplied arguments.

Return type HolodeckEnvironment

66 Chapter 7. Holodeck

CHAPTER 8

Agents

For a higher level description of the agents, see Holodeck Agents.

Definitions for different agents that can be controlled from Holodeck

Classes

AgentDefinition(agent_name, agent_type[, . . .]) Represents information needed to initialize agent.
AgentFactory Creates an agent object
AndroidAgent(client[, name]) An humanoid android agent.
ControlSchemes All allowed control schemes.
HandAgent(client[, name]) A floating hand agent.
HolodeckAgent(client[, name]) A learning agent in Holodeck
NavAgent(client[, name]) A humanoid character capable of intelligent navigation.
SphereAgent(client[, name])
TurtleAgent(client[, name]) A simple turtle bot.
UavAgent(client[, name])

class holodeck.agents.AgentDefinition(agent_name, agent_type, sensors=None, start-
ing_loc=(0, 0, 0), starting_rot=(0, 0, 0), exist-
ing=False, is_main_agent=False)

Represents information needed to initialize agent.

Parameters

• agent_name (str) – The name of the agent to control.

• agent_type (str or type) – The type of HolodeckAgent to control, string or class refer-
ence.

• sensors (SensorDefinition or class type (if no duplicate sensors)) – A list of
HolodeckSensors to read from this agent.

• starting_loc (list of float) – Starting [x, y, z] location for agent (see Coor-
dinate System)

67

Holodeck Documentation, Release 0.3.1

• starting_rot (list of float) – Starting [roll, pitch, yaw] rotation for
agent (see Rotations)

• existing (bool) – If the agent exists in the world or not (deprecated)

class holodeck.agents.AgentFactory
Creates an agent object Methods

build_agent(client, agent_def) Constructs an agent

static build_agent(client, agent_def)
Constructs an agent

Parameters

• client (holodeck.holodeckclient.HolodeckClient) – HolodeckClient
agent is associated with

• agent_def (AgentDefinition) – Definition of the agent to instantiate

Returns:

class holodeck.agents.AndroidAgent(client, name=’DefaultAgent’)
An humanoid android agent.

Can be controlled via torques supplied to its joints.

See AndroidAgent for more details.

Action Space:

94 dimensional vector of continuous values representing torques to be applied at each joint. The layout of joints
can be found here:

There are 18 joints with 3 DOF, 10 with 2 DOF, and 20 with 1 DOF.

Inherits from HolodeckAgent. Attributes

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

joint_ind(joint_name) Gets the joint indices for a given name

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

68 Chapter 8. Agents

Holodeck Documentation, Release 0.3.1

Return type

(

static joint_ind(joint_name)
Gets the joint indices for a given name

Parameters joint_name (str) – Name of the joint to look up

Returns The index into the state array

Return type (int)

class holodeck.agents.ControlSchemes
All allowed control schemes.

ANDROID_TORQUES
Default Android control scheme. Specify a torque for each joint.

Type int

CONTINUOUS_SPHERE_DEFAULT
Default ContinuousSphere control scheme. Takes two commands, [forward_delta, turn_delta].

Type int

DISCRETE_SPHERE_DEFAULT
Default DiscreteSphere control scheme. Takes a value, 0-4, which corresponds with forward, backward,
right, and left.

Type int

NAV_TARGET_LOCATION
Default NavAgent control scheme. Takes a target xyz coordinate.

Type int

UAV_TORQUES
Default UAV control scheme. Takes torques for roll, pitch, and yaw, as well as thrust.

Type int

UAV_ROLL_PITCH_YAW_RATE_ALT
Control scheme for UAV. Takes roll, pitch, yaw rate, and altitude targets.

Type int

HAND_AGENT_MAX_TORQUES
Default Android control scheme. Specify a torque for each joint.

Type int

class holodeck.agents.HandAgent(client, name=’DefaultAgent’)
A floating hand agent.

Can be controlled via torques supplied to its joints and moved around in three dimensions.

See HandAgent for more details.

Action Space:

23 or 26 dimensional vector of continuous values representing torques to be applied at each joint. The layout of
joints can be found here: HandAgent Joints.

Inherits from HolodeckAgent. Attributes

69

Holodeck Documentation, Release 0.3.1

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

joint_ind(joint_name) Gets the joint indices for a given name

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

Return type

(

static joint_ind(joint_name)
Gets the joint indices for a given name

Parameters joint_name (str) – Name of the joint to look up

Returns The index into the state array

Return type (int)

class holodeck.agents.HolodeckAgent(client, name=’DefaultAgent’)
A learning agent in Holodeck

Agents can act, receive rewards, and receive observations from their sensors. Examples include the Android,
UAV, and SphereRobot.

Parameters

• client (HolodeckClient) – The HolodeckClient that this agent belongs with.

• name (str, optional) – The name of the agent. Must be unique from other agents in the
same environment.

• sensors (dict of (str, HolodeckSensor)) – A list of HolodeckSensors to read from
this agent.

Methods

act(action) Sets the command for the agent.
add_sensors(sensor_defs) Adds a sensor to a particular agent object and at-

taches an instance of the sensor to the agent in the
world.

Continued on next page

70 Chapter 8. Agents

Holodeck Documentation, Release 0.3.1

Table 7 – continued from previous page
clear_action() Sets the action to zeros, effectively removing any

previous actions.
get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist

limit values for the specified joint.
has_camera() Indicatates whether this agent has a camera or not.
remove_sensors(sensor_defs) Removes a sensor from a particular agent object and

detaches it from the agent in the world.
set_control_scheme(index) Sets the control scheme for the agent.
set_physics_state(location, rotation, . . .) Sets the location, rotation, velocity and angular ve-

locity of an agent.
teleport([location, rotation]) Teleports the agent to a specific location, with a spe-

cific rotation.

Attributes

action_space Gets the action space for the current agent and con-
trol scheme.

control_schemes A list of all control schemes for the agent.

name
The name of the agent.

Type str

sensors
List of HolodeckSensors on this agent.

Type dict of (string, HolodeckSensor)

agent_state_dict
A dictionary that maps sensor names to sensor observation data.

Type dict

act(action)
Sets the command for the agent. Action depends on the agent type and current control scheme.

Parameters action (np.ndarray) – The action to take.

action_space
Gets the action space for the current agent and control scheme.

Returns

The action space for this agent and control scheme.

Return type ActionSpace

add_sensors(sensor_defs)
Adds a sensor to a particular agent object and attaches an instance of the sensor to the agent in the world.

:param sensor_defs (HolodeckSensor or: list of HolodeckSensor): Sensors to add to the agent.

clear_action()
Sets the action to zeros, effectively removing any previous actions.

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing

71

Holodeck Documentation, Release 0.3.1

a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

Return type

(

has_camera()
Indicatates whether this agent has a camera or not.

Returns If the agent has a sensor or not

Return type bool

remove_sensors(sensor_defs)
Removes a sensor from a particular agent object and detaches it from the agent in the world.

:param sensor_defs (HolodeckSensor or: list of HolodeckSensor): Sensors to remove from the
agent.

set_control_scheme(index)
Sets the control scheme for the agent. See ControlSchemes.

Parameters index (int) – The control scheme to use. Should be set with an enum from
ControlSchemes.

set_physics_state(location, rotation, velocity, angular_velocity)
Sets the location, rotation, velocity and angular velocity of an agent.

Parameters

• location (np.ndarray) – New location ([x, y, z] (see Coordinate System))

• rotation (np.ndarray) – New rotation ([roll, pitch, yaw], see (see Rota-
tions))

• velocity (np.ndarray) – New velocity ([x, y, z] (see Coordinate System))

• angular_velocity (np.ndarray) – New angular velocity ([x, y, z] in de-
grees (see Coordinate System))

teleport(location=None, rotation=None)
Teleports the agent to a specific location, with a specific rotation.

Parameters

• location (np.ndarray, optional) – An array with three elements specifying
the target world coordinates [x, y, z] in meters (see Coordinate System).

If None (default), keeps the current location.

• rotation (np.ndarray, optional) – An array with three elements specifying
roll, pitch, and yaw in degrees of the agent.

If None (default), keeps the current rotation.

72 Chapter 8. Agents

Holodeck Documentation, Release 0.3.1

class holodeck.agents.NavAgent(client, name=’DefaultAgent’)
A humanoid character capable of intelligent navigation.

See NavAgent for more details.

Action Space:

Continuous control scheme of the form [x_target, y_target, z_target]. (see Coordinate System)

Inherits from HolodeckAgent. Attributes

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

Return type

(

class holodeck.agents.SphereAgent(client, name=’DefaultAgent’)
Attributes

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

73

Holodeck Documentation, Release 0.3.1

Returns obj)

Return type

(

class holodeck.agents.TurtleAgent(client, name=’DefaultAgent’)
A simple turtle bot.

See TurtleAgent for more details.

Action Space:

[forward_force, rot_force]

• forward_force is capped at 160 in either direction

• rot_force is capped at 35 either direction

Attributes

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

Inherits from HolodeckAgent.

control_schemes
A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

Return type

(

class holodeck.agents.UavAgent(client, name=’DefaultAgent’)
Attributes

control_schemes A list of all control schemes for the agent.

Methods

get_joint_constraints(joint_name) Returns the corresponding swing1, swing2 and twist
limit values for the specified joint.

control_schemes

74 Chapter 8. Agents

Holodeck Documentation, Release 0.3.1

A list of all control schemes for the agent. Each list element is a 2-tuple, with the first element containing
a short description of the control scheme, and the second element containing the ActionSpace for the
control scheme.

Returns Each tuple contains a short description and the ActionSpace

Return type (str, ActionSpace)

get_joint_constraints(joint_name)
Returns the corresponding swing1, swing2 and twist limit values for the specified joint. Will return None
if the joint does not exist for the agent.

Returns obj)

Return type

(

75

Holodeck Documentation, Release 0.3.1

76 Chapter 8. Agents

CHAPTER 9

Environments

Module containing the environment interface for Holodeck. An environment contains all elements required to com-
municate with a world binary or HolodeckCore editor.

It specifies an environment, which contains a number of agents, and the interface for communicating with the agents.

Classes

HolodeckEnvironment([agent_definitions, . . .]) Proxy for communicating with a Holodeck world

class holodeck.environments.HolodeckEnvironment(agent_definitions=None, bi-
nary_path=None, win-
dow_size=None, start_world=True,
uuid=”, gl_version=4, ver-
bose=False, pre_start_steps=2,
show_viewport=True,
ticks_per_sec=30, copy_state=True,
scenario=None)

Proxy for communicating with a Holodeck world

Instantiate this object using holodeck.holodeck.make().

Parameters

• agent_definitions (list of AgentDefinition) – Which agents are already in
the environment

• binary_path (str, optional) – The path to the binary to load the world from. Defaults
to None.

• window_size ((int,:obj:int)) – height, width of the window to open

• start_world (bool, optional) – Whether to load a binary or not. Defaults to True.

• uuid (str) – A unique identifier, used when running multiple instances of holodeck. De-
faults to “”.

• gl_version (int, optional) – The version of OpenGL to use for Linux. Defaults to 4.

77

Holodeck Documentation, Release 0.3.1

• verbose (bool) – If engine log output should be printed to stdout

• pre_start_steps (int) – Number of ticks to call after initializing the world, allows
the level to load and settle.

• show_viewport (bool, optional) – If the viewport should be shown (Linux only) De-
faults to True.

• ticks_per_sec (int, optional) – Number of frame ticks per unreal second. Defaults to
30.

• copy_state (bool, optional) – If the state should be copied or returned as a reference.
Defaults to True.

• scenario (dict) – The scenario that is to be loaded. See Scenario File Format for the
schema.

Methods

act(agent_name, action) Supplies an action to a particular agent, but doesn’t
tick the environment.

add_agent(agent_def[, is_main_agent]) Add an agent in the world.
draw_arrow(start, end[, color, thickness]) Draws a debug arrow in the world
draw_box(center, extent[, color, thickness]) Draws a debug box in the world
draw_line(start, end[, color, thickness]) Draws a debug line in the world
draw_point(loc[, color, thickness]) Draws a debug point in the world
get_joint_constraints(agent_name,
joint_name)

Returns the corresponding swing1, swing2 and twist
limit values for the specified agent and joint.

info() Returns a string with specific information about the
environment.

move_viewport(location, rotation) Teleport the camera to the given location
reset() Resets the environment, and returns the state.
send_world_command(name[, num_params,
. . .])

Send a world command.

set_control_scheme(agent_name, con-
trol_scheme)

Set the control scheme for a specific agent.

set_render_quality(render_quality) Adjusts the rendering quality of Holodeck.
should_render_viewport(render_viewport) Controls whether the viewport is rendered or not
spawn_prop(prop_type[, location, rotation, . . .]) Spawns a basic prop object in the world like a box or

sphere.
step(action[, ticks]) Supplies an action to the main agent and tells the en-

vironment to tick once.
tick([num_ticks]) Ticks the environment once.

Attributes

action_space Gives the action space for the main agent.

act(agent_name, action)

Supplies an action to a particular agent, but doesn’t tick the environment. Primary mode of interac-
tion for multi-agent environments. After all agent commands are supplied, they can be applied with a
call to tick.

Parameters

78 Chapter 9. Environments

Holodeck Documentation, Release 0.3.1

• agent_name (str) – The name of the agent to supply an action for.

• action (np.ndarray or list) – The action to apply to the agent. This action will be
applied every time tick is called, until a new action is supplied with another call to act.

action_space
Gives the action space for the main agent.

Returns The action space for the main agent.

Return type ActionSpace

add_agent(agent_def, is_main_agent=False)
Add an agent in the world.

It will be spawn when tick() or step() is called next.

The agent won’t be able to be used until the next frame.

Parameters

• agent_def (AgentDefinition) – The definition of the agent to

• spawn. –

draw_arrow(start, end, color=None, thickness=10.0)
Draws a debug arrow in the world

Parameters

• start (list of float) – The start [x, y, z] location of the line. (see Coordinate
System)

• end (list of float) – The end [x, y, z] location of the arrow

• color (list) – [r, g, b] color value

• thickness (float) – thickness of the arrow

draw_box(center, extent, color=None, thickness=10.0)
Draws a debug box in the world

Parameters

• center (list of float) – The start [x, y, z] location of the box. (see Coordinate
System)

• extent (list of float) – The [x, y, z] extent of the box

• color (list) – [r, g, b] color value

• thickness (float) – thickness of the lines

draw_line(start, end, color=None, thickness=10.0)
Draws a debug line in the world

Parameters

• start (list of float) – The start [x, y, z] location of the line. (see Coordinate
System)

• end (list of float) – The end [x, y, z] location of the line

• color (list`) – [r, g, b] color value

• thickness (float) – thickness of the line

79

Holodeck Documentation, Release 0.3.1

draw_point(loc, color=None, thickness=10.0)
Draws a debug point in the world

Parameters

• loc (list of float) – The [x, y, z] start of the box. (see Coordinate System)

• color (list of float) – [r, g, b] color value

• thickness (float) – thickness of the point

get_joint_constraints(agent_name, joint_name)

Returns the corresponding swing1, swing2 and twist limit values for the specified agent and joint.
Will return None if the joint does not exist for the agent.

Returns obj)

Return type

(

info()
Returns a string with specific information about the environment. This information includes which agents
are in the environment and which sensors they have.

Returns Information in a string format.

Return type str

move_viewport(location, rotation)
Teleport the camera to the given location

By the next tick, the camera’s location and rotation will be updated

Parameters

• location (list of float) – The [x, y, z] location to give the camera (see Co-
ordinate System)

• rotation (list of float) – The [roll, pitch, yaw] rotation to give the cam-
era (see Rotations)

reset()
Resets the environment, and returns the state. If it is a single agent environment, it returns that state for
that agent. Otherwise, it returns a dict from agent name to state.

Returns (tuple or dict): For single agent environment, returns the same as step.

For multi-agent environment, returns the same as tick.

send_world_command(name, num_params=None, string_params=None)
Send a world command.

A world command sends an abitrary command that may only exist in a specific world or package. It is
given a name and any amount of string and number parameters that allow it to alter the state of the world.

If a command is sent that does not exist in the world, the environment will exit.

Parameters

• name (str) – The name of the command, ex “OpenDoor”

• (obj (string_params) – list of int): List of arbitrary number parameters

• (obj – list of string): List of arbitrary string parameters

80 Chapter 9. Environments

Holodeck Documentation, Release 0.3.1

set_control_scheme(agent_name, control_scheme)
Set the control scheme for a specific agent.

Parameters

• agent_name (str) – The name of the agent to set the control scheme for.

• control_scheme (int) – A control scheme value (see ControlSchemes)

set_render_quality(render_quality)
Adjusts the rendering quality of Holodeck.

Parameters render_quality (int) – An integer between 0 = Low Quality and 3 = Epic
quality.

should_render_viewport(render_viewport)
Controls whether the viewport is rendered or not

Parameters render_viewport (boolean) – If the viewport should be rendered

spawn_prop(prop_type, location=None, rotation=None, scale=1, sim_physics=False, material=”,
tag=”)

Spawns a basic prop object in the world like a box or sphere.

Prop will not persist after environment reset.

Parameters

• prop_type (string) – The type of prop to spawn. Can be box, sphere, cylinder,
or cone.

• location (list of float) – The [x, y, z] location of the prop.

• rotation (list of float) – The [roll, pitch, yaw] rotation of the prop.

• scale (list of float) or (float) – The [x, y, z] scalars to the prop size, where
the default size is 1 meter. If given a single float value, then every dimension will be scaled
to that value.

• sim_physics (boolean) – Whether the object is mobile and is affected by gravity.

• material (string) – The type of material (texture) to apply to the prop. Can be
white, gold, cobblestone, brick, wood, grass, steel, or black. If left
empty, the prop will have the a simple checkered gray material.

• tag (string) – The tag to apply to the prop. Useful for task references, like the Location
Task.

step(action, ticks=1)
Supplies an action to the main agent and tells the environment to tick once. Primary mode of interaction
for single agent environments.

Parameters

• action (np.ndarray) – An action for the main agent to carry out on the next tick.

• ticks (int) – Number of times to step the environment wiht this action. If ticks > 1,
this function returns the last state generated.

Returns

A 4tuple:

• State: Dictionary from sensor enum (see HolodeckSensor) to np.ndarray.

• Reward (float): Reward returned by the environment.

81

Holodeck Documentation, Release 0.3.1

• Terminal: The bool terminal signal returned by the environment.

• Info: Any additional info, depending on the world. Defaults to None.

Return type (dict, float, bool, info)

tick(num_ticks=1)
Ticks the environment once. Normally used for multi-agent environments. :param num_ticks: Number of
ticks to perform. Defaults to 1. :type num_ticks: int

Returns

A dictionary from agent name to its full state. The full state is another dictionary
from holodeck.sensors.Sensors enum to np.ndarray, containing the sensors
information for each sensor. The sensors always include the reward and terminal
sensors.

Will return the state from the last tick executed.

Return type dict

82 Chapter 9. Environments

CHAPTER 10

Spaces

Contains action space definitions

Classes

ActionSpace(shape[, buffer_shape]) Abstract ActionSpace class.
ContinuousActionSpace(shape[, low, high, . . .]) Action space that takes floating point inputs.
DiscreteActionSpace(shape, low, high[, . . .]) Action space that takes integer inputs.

class holodeck.spaces.ActionSpace(shape, buffer_shape=None)
Abstract ActionSpace class.

Parameters

• shape (list of int) – The shape of data that should be input to step or tick.

• buffer_shape (list of int, optional) – The shape of the data that will be written
to the shared memory.

Only use this when it is different from shape.

Methods

get_high() The maximum value(s) for the action space.
get_low() The minimum value(s) for the action space.
sample() Sample from the action space.

Attributes

shape Get the shape of the action space.

get_high()
The maximum value(s) for the action space.

Returns the action space’s maximum value(s)

83

Holodeck Documentation, Release 0.3.1

Return type (list of float or float)

get_low()
The minimum value(s) for the action space.

Returns the action space’s minimum value(s)

Return type (list of float or float)

sample()
Sample from the action space.

Returns A valid command to be input to step or tick.

Return type (np.ndarray)

shape
Get the shape of the action space.

Returns The shape of the action space.

Return type (list of int)

class holodeck.spaces.ContinuousActionSpace(shape, low=None, high=None, sam-
ple_fn=None, buffer_shape=None)

Action space that takes floating point inputs.

Parameters

• shape (list of int) – The shape of data that should be input to step or tick.

• sample_fn (function, optional) – A function that takes a shape parameter and
outputs a sampled command.

• low (list of float or float) – the low value(s) for the action space. Can be a scalar
or an array

• high (list of float or float) – the high value(s) for the action space. Cand be a
scalar or an array

If this is not given, it will default to sampling from a unit gaussian.

• buffer_shape (list of int, optional) – The shape of the data that will be written
to the shared memory.

Only use this when it is different from shape.

Methods

get_high() The maximum value(s) for the action space.
get_low() The minimum value(s) for the action space.
sample() Sample from the action space.

get_high()
The maximum value(s) for the action space.

Returns the action space’s maximum value(s)

Return type (list of float or float)

get_low()
The minimum value(s) for the action space.

Returns the action space’s minimum value(s)

84 Chapter 10. Spaces

Holodeck Documentation, Release 0.3.1

Return type (list of float or float)

sample()
Sample from the action space.

Returns A valid command to be input to step or tick.

Return type (np.ndarray)

class holodeck.spaces.DiscreteActionSpace(shape, low, high, buffer_shape=None)
Action space that takes integer inputs.

Parameters

• shape (list of int) – The shape of data that should be input to step or tick.

• low (int) – The lowest value to sample.

• high (int) – The highest value to sample.

• buffer_shape (list of int, optional) – The shape of the data that will be written
to the shared memory.

Only use this when it is different from shape.

Methods

get_high() The maximum value(s) for the action space.
get_low() The minimum value(s) for the action space.
sample() Sample from the action space.

get_high()
The maximum value(s) for the action space.

Returns the action space’s maximum value(s)

Return type (list of float or float)

get_low()
The minimum value(s) for the action space.

Returns the action space’s minimum value(s)

Return type (list of float or float)

sample()
Sample from the action space.

Returns A valid command to be input to step or tick.

Return type (np.ndarray)

85

Holodeck Documentation, Release 0.3.1

86 Chapter 10. Spaces

CHAPTER 11

Commands

This module contains the classes used for formatting and sending commands to the Holodeck backend. Most of these
commands are just used internally by Holodeck, regular users do not need to worry about these.

Classes

AddSensorCommand(sensor_definition) Add a sensor to an agent
Command() Base class for Command objects.
CommandCenter(client) Manages pending commands to send to the client (the

engine).
CommandsGroup() Represents a list of commands
CustomCommand(name[, num_params,
string_params])

Send a custom command to the currently loaded world.

DebugDrawCommand(draw_type, start, end, . . .) Draw debug geometry in the world.
RGBCameraRateCommand(agent_name, . . .) Set the number of ticks between captures of the RGB

camera.
RemoveSensorCommand(agent, sensor) Remove a sensor from an agent
RenderQualityCommand(render_quality) Adjust the rendering quality of Holodeck
RenderViewportCommand(render_viewport) Enable or disable the viewport.
RotateSensorCommand(agent, sensor, rotation) Rotate a sensor on the agent
SpawnAgentCommand(location, rotation, name, . . .) Spawn an agent in the world.
TeleportCameraCommand(location, rotation) Move the viewport camera (agent follower)

class holodeck.command.AddSensorCommand(sensor_definition)
Add a sensor to an agent

Parameters sensor_definition (SensorDefinition) – Sensor to add

class holodeck.command.Command
Base class for Command objects.

Commands are used for IPC between the holodeck python bindings and holodeck binaries.

Derived classes must set the _command_type.

87

Holodeck Documentation, Release 0.3.1

The order in which add_number_parameters() and add_number_parameters() are called is sig-
nificant, they are added to an ordered list. Ensure that you are adding parameters in the order the client expects
them. Methods

add_number_parameters(number) Add given number parameters to the internal list.
add_string_parameters(string) Add given string parameters to the internal list.
set_command_type(command_type) Set the type of the command.
to_json() Converts to json.

add_number_parameters(number)
Add given number parameters to the internal list.

Parameters number (list of int/float, or singular int/float) – A number or list of
numbers to add to the parameters.

add_string_parameters(string)
Add given string parameters to the internal list.

Parameters string (list of str or str) – A string or list of strings to add to the param-
eters.

set_command_type(command_type)
Set the type of the command.

Parameters command_type (str) – This is the name of the command that it will be set to.

to_json()
Converts to json.

Returns This object as a json string.

Return type str

class holodeck.command.CommandCenter(client)
Manages pending commands to send to the client (the engine).

Parameters client (HolodeckClient) – Client to send commands to

Methods

clear() Clears pending commands
enqueue_command(command_to_send) Adds command to outgoing queue.
handle_buffer() Writes the list of commands into the command

buffer, if needed.

Attributes

queue_size Size of commands queue

clear()
Clears pending commands

enqueue_command(command_to_send)
Adds command to outgoing queue.

Parameters command_to_send (Command) – Command to add to queue

handle_buffer()
Writes the list of commands into the command buffer, if needed.

88 Chapter 11. Commands

Holodeck Documentation, Release 0.3.1

Checks if we should write to the command buffer, writes all of the queued commands to the buffer, and
then clears the contents of the self._commands list

queue_size
Size of commands queue

Type Returns

Type int

class holodeck.command.CommandsGroup
Represents a list of commands

Can convert list of commands to json. Methods

add_command(command) Adds a command to the list
clear() Clear the list of commands.
to_json()

returns Json for commands array ob-
ject and all of the commands in-
side the array.

Attributes

size Size of commands group

add_command(command)
Adds a command to the list

Parameters command (Command) – A command to add.

clear()
Clear the list of commands.

size
Size of commands group

Type Returns

Type int

to_json()

Returns Json for commands array object and all of the commands inside the array.

Return type str

class holodeck.command.CustomCommand(name, num_params=None, string_params=None)
Send a custom command to the currently loaded world.

Parameters

• name (str) – The name of the command, ex “OpenDoor”

• (obj (string_params) – list of int): List of arbitrary number parameters

• (obj – list of int): List of arbitrary string parameters

class holodeck.command.DebugDrawCommand(draw_type, start, end, color, thickness)
Draw debug geometry in the world.

Parameters

89

Holodeck Documentation, Release 0.3.1

• draw_type (int) – The type of object to draw

– 0: line

– 1: arrow

– 2: box

– 3: point

• start (list of float) – The start [x, y, z] location of the object. (see Coordi-
nate System)

• end (list of float) – The end [x, y, z] location of the object (not used for point,
and extent for box)

• color (list of float) – [r, g, b] values for the color

• thickness (float) – thickness of the line/object

class holodeck.command.RGBCameraRateCommand(agent_name, sensor_name,
ticks_per_capture)

Set the number of ticks between captures of the RGB camera.

Parameters

• agent_name (str) – name of the agent to modify

• sensor_name (str) – name of the sensor to modify

• ticks_per_capture (int) – number of ticks between captures

class holodeck.command.RemoveSensorCommand(agent, sensor)
Remove a sensor from an agent

Parameters

• agent (str) – Name of agent to modify

• sensor (str) – Name of the sensor to remove

class holodeck.command.RenderQualityCommand(render_quality)
Adjust the rendering quality of Holodeck

Parameters render_quality (int) – 0 = low, 1 = medium, 3 = high, 3 = epic

class holodeck.command.RenderViewportCommand(render_viewport)
Enable or disable the viewport. Note that this does not prevent the viewport from being shown, it just prevents
it from being updated.

Parameters render_viewport (bool) – If viewport should be rendered

class holodeck.command.RotateSensorCommand(agent, sensor, rotation)
Rotate a sensor on the agent

Parameters

• agent (str) – Name of agent

• sensor (str) – Name of the sensor to rotate

• rotation (list of float) – [roll, pitch, yaw] rotation for sensor.

class holodeck.command.SpawnAgentCommand(location, rotation, name, agent_type,
is_main_agent=False)

Spawn an agent in the world.

Parameters

90 Chapter 11. Commands

Holodeck Documentation, Release 0.3.1

• location (list of float) – [x, y, z] location to spawn agent (see Coordinate
System)

• name (str) – The name of the agent.

• agent_type (str or type) – The type of agent to spawn (UAVAgent, NavAgent, . . .)

Methods

set_location(location) Set where agent will be spawned.
set_name(name) Set agents name
set_rotation(rotation) Set where agent will be spawned.
set_type(agent_type) Set the type of agent.

set_location(location)
Set where agent will be spawned.

Parameters location (list of float) – [x, y, z] location to spawn agent (see Co-
ordinate System)

set_name(name)
Set agents name

Parameters name (str) – The name to set the agent to.

set_rotation(rotation)
Set where agent will be spawned.

Parameters rotation (list of float) – [roll, pitch, yaw] rotation for agent.
(see Rotations)

set_type(agent_type)
Set the type of agent.

Parameters agent_type (str or type) – The type of agent to spawn.

class holodeck.command.TeleportCameraCommand(location, rotation)
Move the viewport camera (agent follower)

Parameters

• location (list of float) – The [x, y, z] location to give the camera (see Co-
ordinate System)

• rotation (list of float) – The [roll, pitch, yaw] rotation to give the
camera (see Rotations)

91

Holodeck Documentation, Release 0.3.1

92 Chapter 11. Commands

CHAPTER 12

Holodeck Client

The client used for subscribing shared memory between python and c++.

Classes

HolodeckClient([uuid, should_timeout]) HolodeckClient for controlling a shared memory ses-
sion.

class holodeck.holodeckclient.HolodeckClient(uuid=”, should_timeout=False)
HolodeckClient for controlling a shared memory session.

Parameters

• uuid (str, optional) – A UUID to indicate which server this client is associated with.
The same UUID should be passed to the world through a command line flag. Defaults to
“”.

• should_timeout (boolean, optional) – If the client should time out after 5s waiting
for the engine

Methods

acquire() Used to acquire control.
malloc(key, shape, dtype) Allocates a block of shared memory, and returns a

numpy array whose data corresponds with that block.
release() Used to release control.

acquire()
Used to acquire control. Will wait until the HolodeckServer has finished its work.

malloc(key, shape, dtype)
Allocates a block of shared memory, and returns a numpy array whose data corresponds with that block.

Parameters

• key (str) – The key to identify the block.

93

Holodeck Documentation, Release 0.3.1

• shape (list of int) – The shape of the numpy array to allocate.

• dtype (type) – The numpy data type (e.g. np.float32).

Returns The numpy array that is positioned on the shared memory.

Return type np.ndarray

release()
Used to release control. Will allow the HolodeckServer to take a step.

94 Chapter 12. Holodeck Client

CHAPTER 13

Package Manager

Package manager for worlds available to download and use for Holodeck

Functions

available_packages() Returns a list of package names available for the current
version of Holodeck

get_binary_path_for_package(package_name) Gets the path to the binary of a specific package.
get_binary_path_for_scenario(scenario_name)Gets the path to the binary for a given scenario name
get_package_config_for_scenario(scenario) For the given scenario, returns the package config asso-

ciated with it (config.json)
get_scenario(scenario_name) Gets the scenario configuration associated with the

given name
install(package_name[, url]) Installs a holodeck package.
installed_packages() Returns a list of all installed packages
load_scenario_file(scenario_path) Loads the scenario config file and returns a dictionary

containing the configuration
package_info(pkg_name) Prints the information of a package.
prune() Prunes old versions of holodeck, other than the running

version.
remove(package_name) Removes a holodeck package.
remove_all_packages() Removes all holodeck packages.
scenario_info([scenario_name, scenario, . . .]) Gets and prints information for a particular scenario file
world_info(world_name[, world_config, . . .]) Gets and prints the information of a world.

holodeck.packagemanager.available_packages()
Returns a list of package names available for the current version of Holodeck

Returns (list of str): List of package names

holodeck.packagemanager.get_binary_path_for_package(package_name)
Gets the path to the binary of a specific package.

Parameters package_name (str) – Name of the package to search for

95

Holodeck Documentation, Release 0.3.1

Returns Returns the path to the config directory

Return type str

Raises NotFoundException – When the package requested is not found

holodeck.packagemanager.get_binary_path_for_scenario(scenario_name)
Gets the path to the binary for a given scenario name

Parameters scenario_name (str) – name of the configuration to load - eg “UrbanCity-
Follow” Must be an exact match. Name must be unique among all installed packages

Returns A dictionary containing the configuration file

Return type dict

holodeck.packagemanager.get_package_config_for_scenario(scenario)
For the given scenario, returns the package config associated with it (config.json)

Parameters scenario (dict) – scenario dict to look up the package for

Returns package configuration dictionary

Return type dict

holodeck.packagemanager.get_scenario(scenario_name)
Gets the scenario configuration associated with the given name

Parameters scenario_name (str) – name of the configuration to load - eg “UrbanCity-
Follow” Must be an exact match. Name must be unique among all installed packages

Returns A dictionary containing the configuration file

Return type dict

holodeck.packagemanager.install(package_name, url=None)
Installs a holodeck package.

Parameters package_name (str) – The name of the package to install

holodeck.packagemanager.installed_packages()
Returns a list of all installed packages

Returns List of all the currently installed packages

Return type list of str

holodeck.packagemanager.load_scenario_file(scenario_path)
Loads the scenario config file and returns a dictionary containing the configuration

Parameters scenario_path (str) – Path to the configuration file

Returns A dictionary containing the configuration file

Return type dict

holodeck.packagemanager.package_info(pkg_name)
Prints the information of a package.

Parameters pkg_name (str) – The name of the desired package to get information

holodeck.packagemanager.prune()
Prunes old versions of holodeck, other than the running version.

DO NOT USE WITH HOLODECKPATH

Don’t use this function if you have overidden the path.

96 Chapter 13. Package Manager

Holodeck Documentation, Release 0.3.1

holodeck.packagemanager.remove(package_name)
Removes a holodeck package.

Parameters package_name (str) – the name of the package to remove

holodeck.packagemanager.remove_all_packages()
Removes all holodeck packages.

holodeck.packagemanager.scenario_info(scenario_name=”, scenario=None, base_indent=0)
Gets and prints information for a particular scenario file Must match this format: scenario_name.json

Parameters

• scenario_name (str) – The name of the scenario

• scenario (dict, optional) – Loaded dictionary config (overrides world_name and
scenario_name)

• base_indent (int, optional) – How much to indent output by

holodeck.packagemanager.world_info(world_name, world_config=None, base_indent=0)
Gets and prints the information of a world.

Parameters

• world_name (str) – the name of the world to retrieve information for

• world_config (dict, optional) – A dictionary containing the world’s configuration.
Will find the config if None. Defaults to None.

• base_indent (int, optional) – How much to indent output

97

Holodeck Documentation, Release 0.3.1

98 Chapter 13. Package Manager

CHAPTER 14

Sensors

Definition of all of the sensor information

Classes

AbuseSensor(client[, agent_name, . . .]) Returns True if the agent has been abused.
AvoidTask(client[, agent_name, agent_type, . . .])
BallLocationSensor(client[, agent_name, . . .]) For the CupGame task, returns which cup the ball is un-

derneath.
CleanUpTask(client[, agent_name, . . .])
CollisionSensor(client[, agent_name, . . .]) Returns true if the agent is colliding with anything (in-

cluding the ground).
CupGameTask(client[, agent_name, . . .])
DistanceTask(client[, agent_name, . . .])
FollowTask(client[, agent_name, agent_type, . . .])
HolodeckSensor(client[, agent_name, . . .]) Base class for a sensor
IMUSensor(client[, agent_name, agent_type, . . .]) Inertial Measurement Unit sensor.
JointRotationSensor(client, agent_name, . . .) Returns the state of the AndroidAgent’s or the

HandAgent’s joints.
LocationSensor(client[, agent_name, . . .]) Gets the location of the agent in the world.
LocationTask(client[, agent_name, . . .])
OrientationSensor(client[, agent_name, . . .]) Gets the forward, right, and up vector for the agent.
PressureSensor(client, agent_name, agent_type) For each joint on the AndroidAgent or the

HandAgent, returns the pressure on the joint.
RGBCamera(client, agent_name, agent_type[, . . .]) Captures agent’s view.
RangeFinderSensor(client, agent_name,
agent_type)

Returns distances to nearest collisions in the directions
specified by the parameters.

RelativeSkeletalPositionSensor(client,
. . .)

Gets the position of each bone in a skeletal mesh as a
quaternion.

RotationSensor(client[, agent_name, . . .]) Gets the rotation of the agent in the world.
SensorDefinition(agent_name, agent_type, . . .) A class for new sensors and their parameters, to be used

for adding new sensors.
Continued on next page

99

Holodeck Documentation, Release 0.3.1

Table 1 – continued from previous page
SensorFactory Given a sensor definition, constructs the appropriate

HolodeckSensor object.
VelocitySensor(client[, agent_name, . . .]) Returns the x, y, and z velocity of the agent.
ViewportCapture(client, agent_name, agent_type) Captures what the viewport is seeing.
WorldNumSensor(client[, agent_name, . . .]) Returns any numeric value from the world correspond-

ing to a given key.

class holodeck.sensors.AbuseSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Returns True if the agent has been abused. Abuse is calculated differently for different agents. The Sphere and
Hand agent cannot be abused. The Uav, Android, and Turtle agents can be abused by experiencing high levels
of acceleration. The Uav is abused when its blades collide with another object, and the Turtle agent is abused
when it’s flipped over.

Configuration

• AccelerationLimit: Maximum acceleration the agent can endure before being considered abused.
The default depends on the agent, usually around 300 m/s^2.

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.AvoidTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

100 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

class holodeck.sensors.BallLocationSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

For the CupGame task, returns which cup the ball is underneath.

The cups are numbered 0-2, from the agents perspective, left to right. As soon as a swap begins, the number
returned by this sensor is updated to the balls new position after the swap ends.

Only works in the CupGame world. Attributes

dtype The type of data in the sensor

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.CleanUpTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

Methods

start_task(num_trash[, use_table]) Spawn trash around the trash can.

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

start_task(num_trash, use_table=False)
Spawn trash around the trash can. Do not call if the config file contains a clean up task configuration
block.

Parameters

• num_trash (int) – Amount of trash to spawn

• use_table (bool, optional) – If True a table will spawn next to the trash can, all
trash will be on the table, and the trash can lid will be absent. This makes the task
significantly easier. If False, all trash will spawn on the ground. Defaults to False.

class holodeck.sensors.CollisionSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Returns true if the agent is colliding with anything (including the ground). Attributes

101

Holodeck Documentation, Release 0.3.1

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.CupGameTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

Methods

start_game(num_shuffles[, speed, seed]) Start the cup game and set its configuration.

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

start_game(num_shuffles, speed=3, seed=None)
Start the cup game and set its configuration. Do not call if the config file contains a cup task configuration
block, as it will override the configuration and cause undefined behavior.

Parameters

• num_shuffles (int) – Number of shuffles

• speed (int) – Speed of the shuffle. Works best between 1-10

• seed (int) – Seed to rotate the cups the same way every time. If none is given, a
seed will not be used.

class holodeck.sensors.DistanceTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

102 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.FollowTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.HolodeckSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Base class for a sensor

Parameters

• client (HolodeckClient) – Client attached to a sensor

• agent_name (str) – Name of the parent agent

• agent_type (str) – Type of the parent agent

• name (str) – Name of the sensor

• config (dict) – Configuration dictionary to pass to the engine

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor
sensor_data Get the sensor data buffer

Methods

103

Holodeck Documentation, Release 0.3.1

rotate(rotation) Rotate the sensor.

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

rotate(rotation)
Rotate the sensor. It will be applied in approximately three ticks. step() or tick().)

This will not persist after a call to reset(). If you want a persistent rotation for a sensor, specify it in your
scenario configuration.

Parameters rotation (list of float) – rotation for sensor (see Rotations).

sensor_data
Get the sensor data buffer

Returns Current sensor data

Return type np.ndarray of size self.data_shape

class holodeck.sensors.IMUSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Inertial Measurement Unit sensor.

Returns a 2D numpy array of

::‘

[[acceleration_x, acceleration_y, acceleration_z], [velocity_roll, velocity_pitch, velocity_yaw]
]

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.JointRotationSensor(client, agent_name, agent_type,
name=’RGBCamera’, config=None)

Returns the state of the AndroidAgent’s or the HandAgent’s joints.

104 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

See Android Joints or HandAgent Joints for the indexes into this vector. Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.LocationSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Gets the location of the agent in the world.

Returns coordinates in [x, y, z] format (see Coordinate System) Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.LocationTask(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

105

Holodeck Documentation, Release 0.3.1

Return type numpy dtype

class holodeck.sensors.OrientationSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Gets the forward, right, and up vector for the agent. Returns a 2D numpy array of

[[forward_x, forward_y, forward_z],
[right_x, right_y, right_z],
[up_x, up_y, up_z]]

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.PressureSensor(client, agent_name, agent_type,
name=’RGBCamera’, config=None)

For each joint on the AndroidAgent or the HandAgent, returns the pressure on the joint.

For each joint, returns [x_loc, y_loc, z_loc, force], in the order the joints are listed in Android
Joints or HandAgent Joints. Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.RGBCamera(client, agent_name, agent_type, name=’RGBCamera’, con-
fig=None)

Captures agent’s view.

The default capture resolution is 256x256x256x4, corresponding to the RGBA channels. The resolution can be
increased, but will significantly impact performance.

Configuration

106 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

The configuration block (see Configuration Block) accepts the following options:

• CaptureWidth: Width of captured image

• CaptureHeight: Height of captured image

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

Methods

set_ticks_per_capture(ticks_per_capture) Sets this RGBCamera to capture a new frame every
ticks_per_capture.

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

set_ticks_per_capture(ticks_per_capture)
Sets this RGBCamera to capture a new frame every ticks_per_capture.

The sensor’s image will remain unchanged between captures.

This method must be called after every call to env.reset.

Parameters ticks_per_capture (int) – The amount of ticks to wait between camera
captures.

class holodeck.sensors.RangeFinderSensor(client, agent_name, agent_type,
name=’RangeFinderSensor’, config=None)

Returns distances to nearest collisions in the directions specified by the parameters. For example, if an agent
had two range sensors at different angles with 24 lasers each, the LaserDebug traces would look something like
this:

107

Holodeck Documentation, Release 0.3.1

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

Configuration

The configuration block (see Configuration Block) accepts the following options:

• LaserMaxDistance: Max Distance in meters of RangeFinder. (default 10)

• LaserCount: Number of lasers in sensor. (default 1)

• LaserAngle: Angle of lasers from origin. Measured in degrees. Positive angles point up. (default 0)

• LaserDebug: Show debug traces. (default false)

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.RelativeSkeletalPositionSensor(client, agent_name,
agent_type,
name=’RGBCamera’, con-
fig=None)

Gets the position of each bone in a skeletal mesh as a quaternion.

108 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

Returns a numpy array with four entries for each bone (see AndroidAgent Bones or HandAgent Bones for the
order used) Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.RotationSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Gets the rotation of the agent in the world.

Returns [roll, pitch, yaw] (see Rotations) Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.SensorDefinition(agent_name, agent_type, sensor_name, sen-
sor_type, socket=”, location=(0, 0, 0), rotation=(0,
0, 0), config=None, existing=False)

A class for new sensors and their parameters, to be used for adding new sensors.

Parameters

• agent_name (str) – The name of the parent agent.

• agent_type (str) – The type of the parent agent

• sensor_name (str) – The name of the sensor.

• sensor_type (str or HolodeckSensor) – The type of the sensor.

• socket (str, optional) – The name of the socket to attach sensor to.

• location (Tuple of float, optional) – [x, y, z] coordinates to place sensor rel-
ative to agent (or socket) (see Coordinate System).

109

Holodeck Documentation, Release 0.3.1

• rotation (Tuple of float, optional) – [roll, pitch, yaw] to rotate sensor
relative to agent (see Rotations)

• config (dict) – Configuration dictionary for the sensor, to pass to engine

Methods

get_config_json_string() Gets the configuration dictionary as a string ready for
transport

get_config_json_string()
Gets the configuration dictionary as a string ready for transport

Returns The configuration as an escaped json string

Return type (str)

class holodeck.sensors.SensorFactory
Given a sensor definition, constructs the appropriate HolodeckSensor object. Methods

build_sensor(client, sensor_def) Constructs a given sensor associated with client

static build_sensor(client, sensor_def)
Constructs a given sensor associated with client

Parameters

• client (str) – Name of the agent this sensor is attached to

• sensor_def (SensorDefinition) – Sensor definition to construct

Returns:

class holodeck.sensors.VelocitySensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Returns the x, y, and z velocity of the agent. Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.ViewportCapture(client, agent_name, agent_type,
name=’ViewportCapture’, config=None)

Captures what the viewport is seeing.

The ViewportCapture is faster than the RGB camera, but there can only be one camera and it must capture what
the viewport is capturing. If performance is critical, consider this camera instead of the RGBCamera.

110 Chapter 14. Sensors

Holodeck Documentation, Release 0.3.1

It may be useful to position the camera with teleport_camera().

Configuration

The configuration block (see Configuration Block) accepts the following options:

• CaptureWidth: Width of captured image

• CaptureHeight: Height of captured image

Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

THESE DIMENSIONS MUST MATCH THE VIEWPORT DIMENSTIONS

If you have configured the size of the viewport (window_height/width), you must make sure that
CaptureWidth/Height of this configuration block is set to the same dimensions.

The default resolution is 1280x720, matching the default Viewport resolution.

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

class holodeck.sensors.WorldNumSensor(client, agent_name=None, agent_type=None,
name=’DefaultSensor’, config=None)

Returns any numeric value from the world corresponding to a given key. This is world specific. Attributes

data_shape The shape of the sensor data
dtype The type of data in the sensor

data_shape
The shape of the sensor data

Returns Sensor data shape

Return type tuple

dtype
The type of data in the sensor

Returns Type of sensor data

Return type numpy dtype

111

Holodeck Documentation, Release 0.3.1

112 Chapter 14. Sensors

CHAPTER 15

Shared Memory

Shared memory with memory mapping

Classes

Shmem(name, shape[, dtype, uuid]) Implementation of shared memory

class holodeck.shmem.Shmem(name, shape, dtype=<class ’numpy.float32’>, uuid=”)
Implementation of shared memory

Parameters

• name (str) – Name the points to the beginning of the shared memory block

• shape (int) – Shape of the memory block

• dtype (type, optional) – data type of the shared memory. Defaults to np.float32

• uuid (str, optional) – UUID of the memory block. Defaults to “”

Methods

unlink() unlinks the shared memory

unlink()
unlinks the shared memory

113

Holodeck Documentation, Release 0.3.1

114 Chapter 15. Shared Memory

CHAPTER 16

Util

Helpful Utilities

Functions

convert_unicode(value) Resolves python 2 issue with json loading in unicode
instead of string

get_holodeck_path() Gets the path of the holodeck environment
get_holodeck_version() Gets the current version of holodeck
get_os_key() Gets the key for the OS.
human_readable_size(size_bytes) Gets a number of bytes as a human readable string.

holodeck.util.convert_unicode(value)
Resolves python 2 issue with json loading in unicode instead of string

Parameters value (str) – Unicode value to be converted

Returns Converted string

Return type (str)

holodeck.util.get_holodeck_path()
Gets the path of the holodeck environment

Returns path to the current holodeck environment

Return type (str)

holodeck.util.get_holodeck_version()
Gets the current version of holodeck

Returns the current version

Return type (str)

holodeck.util.get_os_key()
Gets the key for the OS.

115

Holodeck Documentation, Release 0.3.1

Returns Linux or Windows. Throws NotImplementedError for other systems.

Return type str

holodeck.util.human_readable_size(size_bytes)
Gets a number of bytes as a human readable string.

Parameters size_bytes (int) – The number of bytes to get as human readable.

Returns The number of bytes in a human readable form.

Return type str

116 Chapter 16. Util

CHAPTER 17

Exceptions

Holodeck Exceptions

Exceptions

HolodeckConfigurationException The user provided an invalid configuration for Holodeck
HolodeckException Base class for a generic exception in Holodeck.
NotFoundException Raised when a package cannot be found
TimeoutException Exception raised when communicating with the engine

timed out.

exception holodeck.exceptions.HolodeckConfigurationException
The user provided an invalid configuration for Holodeck

exception holodeck.exceptions.HolodeckException
Base class for a generic exception in Holodeck.

Parameters message (str) – The error string.

exception holodeck.exceptions.NotFoundException
Raised when a package cannot be found

exception holodeck.exceptions.TimeoutException
Exception raised when communicating with the engine timed out.

117

Holodeck Documentation, Release 0.3.1

118 Chapter 17. Exceptions

CHAPTER 18

Weather Controller

Weather/time controller for environments

Classes

WeatherController(send_world_command) Controller for dynamically changing weather and time
in an environment

class holodeck.weather.WeatherController(send_world_command)
Controller for dynamically changing weather and time in an environment

Parameters send_world_command (function) – Callback for sending commands to a
world

Methods

set_day_time(hour) Change the time of day.
set_fog_density(density) Change the fog density.
set_weather(weather_type) Set the world’s weather.
start_day_cycle(day_length) Start the day cycle.
stop_day_cycle() Stop the day cycle.

set_day_time(hour)
Change the time of day.

Daytime will change when tick() or step() is called next.

By the next tick, the lighting and the skysphere will be updated with the new hour.

If there is no skysphere, skylight, or directional source light in the world, this command will exit the
environment.

Parameters hour (int) – The hour in 24-hour format: [0, 23].

set_fog_density(density)
Change the fog density.

119

Holodeck Documentation, Release 0.3.1

The change will occur when tick() or step() is called next.

By the next tick, the exponential height fog in the world will have the new density. If there is no fog in
the world, it will be created with the given density.

Parameters density (float) – The new density value, between 0 and 1. The command
will not be sent if the given density is invalid.

set_weather(weather_type)
Set the world’s weather.

The new weather will be applied when tick() or step() is called next.

By the next tick, the lighting, skysphere, fog, and relevant particle systems will be updated and/or spawned
to the given weather.

If there is no skysphere, skylight, or directional source light in the world, this command will exit the
environment.

Note: Because this command can affect the fog density, any changes made by a
change_fog_density command before a set_weather command called will be undone. It is rec-
ommended to call change_fog_density after calling set weather if you wish to apply your specific
changes.

In all downloadable worlds, the weather is sunny by default.

If the given type string is not available, the command will not be sent.

Parameters

• weather_type (str) – The type of weather, which can be rain, cloudy, or

• sunny. –

start_day_cycle(day_length)
Start the day cycle.

The cycle will start when tick() or step() is called next.

The sky sphere will then update each tick with an updated sun angle as it moves about the sky. The length
of a day will be roughly equivalent to the number of minutes given.

If there is no skysphere, skylight, or directional source light in the world, this command will exit the
environment.

Parameters day_length (int) – The number of minutes each day will be.

stop_day_cycle()
Stop the day cycle.

The cycle will stop when tick() or step() is called next.

By the next tick, day cycle will stop where it is.

If there is no skysphere, skylight, or directional source light in the world, this command will exit the
environment.

120 Chapter 18. Weather Controller

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

121

Holodeck Documentation, Release 0.3.1

122 Chapter 19. Indices and tables

Python Module Index

h
holodeck.agents, 67
holodeck.command, 87
holodeck.environments, 77
holodeck.exceptions, 117
holodeck.holodeck, 65
holodeck.holodeckclient, 93
holodeck.packagemanager, 95
holodeck.sensors, 99
holodeck.shmem, 113
holodeck.spaces, 83
holodeck.util, 115
holodeck.weather, 119

123

Holodeck Documentation, Release 0.3.1

124 Python Module Index

Index

A
AbuseSensor (class in holodeck.sensors), 100
acquire() (holodeck.holodeckclient.HolodeckClient

method), 93
act() (holodeck.agents.HolodeckAgent method), 71
act() (holodeck.environments.HolodeckEnvironment

method), 78
action_space (holodeck.agents.HolodeckAgent at-

tribute), 71
action_space (holodeck.environments.HolodeckEnvironment

attribute), 79
ActionSpace (class in holodeck.spaces), 83
add_agent() (holodeck.environments.HolodeckEnvironment

method), 79
add_command() (holodeck.command.CommandsGroup

method), 89
add_number_parameters()

(holodeck.command.Command method),
88

add_sensors() (holodeck.agents.HolodeckAgent
method), 71

add_string_parameters()
(holodeck.command.Command method),
88

AddSensorCommand (class in holodeck.command), 87
agent_state_dict (holodeck.agents.HolodeckAgent

attribute), 71
AgentDefinition (class in holodeck.agents), 67
AgentFactory (class in holodeck.agents), 68
ANDROID_TORQUES (holodeck.agents.ControlSchemes

attribute), 69
AndroidAgent (class in holodeck.agents), 68
available_packages() (in module

holodeck.packagemanager), 95
AvoidTask (class in holodeck.sensors), 100

B
BallLocationSensor (class in holodeck.sensors),

100

build_agent() (holodeck.agents.AgentFactory static
method), 68

build_sensor() (holodeck.sensors.SensorFactory
static method), 110

C
CleanUpTask (class in holodeck.sensors), 101
clear() (holodeck.command.CommandCenter

method), 88
clear() (holodeck.command.CommandsGroup

method), 89
clear_action() (holodeck.agents.HolodeckAgent

method), 71
CollisionSensor (class in holodeck.sensors), 101
Command (class in holodeck.command), 87
CommandCenter (class in holodeck.command), 88
CommandsGroup (class in holodeck.command), 89
CONTINUOUS_SPHERE_DEFAULT

(holodeck.agents.ControlSchemes attribute), 69
ContinuousActionSpace (class in

holodeck.spaces), 84
control_schemes (holodeck.agents.AndroidAgent

attribute), 68
control_schemes (holodeck.agents.HandAgent at-

tribute), 69
control_schemes (holodeck.agents.HolodeckAgent

attribute), 71
control_schemes (holodeck.agents.NavAgent

attribute), 73
control_schemes (holodeck.agents.SphereAgent at-

tribute), 73
control_schemes (holodeck.agents.TurtleAgent at-

tribute), 74
control_schemes (holodeck.agents.UavAgent

attribute), 74
ControlSchemes (class in holodeck.agents), 69
convert_unicode() (in module holodeck.util), 115
CupGameTask (class in holodeck.sensors), 102
CustomCommand (class in holodeck.command), 89

125

Holodeck Documentation, Release 0.3.1

D
data_shape (holodeck.sensors.AbuseSensor attribute),

100
data_shape (holodeck.sensors.AvoidTask attribute),

100
data_shape (holodeck.sensors.CleanUpTask at-

tribute), 101
data_shape (holodeck.sensors.CollisionSensor at-

tribute), 101
data_shape (holodeck.sensors.CupGameTask at-

tribute), 102
data_shape (holodeck.sensors.DistanceTask at-

tribute), 102
data_shape (holodeck.sensors.FollowTask attribute),

103
data_shape (holodeck.sensors.HolodeckSensor

attribute), 104
data_shape (holodeck.sensors.IMUSensor attribute),

104
data_shape (holodeck.sensors.JointRotationSensor

attribute), 105
data_shape (holodeck.sensors.LocationSensor at-

tribute), 105
data_shape (holodeck.sensors.LocationTask at-

tribute), 105
data_shape (holodeck.sensors.OrientationSensor at-

tribute), 106
data_shape (holodeck.sensors.PressureSensor at-

tribute), 106
data_shape (holodeck.sensors.RangeFinderSensor at-

tribute), 108
data_shape (holodeck.sensors.RelativeSkeletalPositionSensor

attribute), 109
data_shape (holodeck.sensors.RGBCamera attribute),

107
data_shape (holodeck.sensors.RotationSensor at-

tribute), 109
data_shape (holodeck.sensors.VelocitySensor at-

tribute), 110
data_shape (holodeck.sensors.ViewportCapture at-

tribute), 111
data_shape (holodeck.sensors.WorldNumSensor at-

tribute), 111
DebugDrawCommand (class in holodeck.command), 89
DISCRETE_SPHERE_DEFAULT

(holodeck.agents.ControlSchemes attribute), 69
DiscreteActionSpace (class in holodeck.spaces),

85
DistanceTask (class in holodeck.sensors), 102
draw_arrow() (holodeck.environments.HolodeckEnvironment

method), 79
draw_box() (holodeck.environments.HolodeckEnvironment

method), 79
draw_line() (holodeck.environments.HolodeckEnvironment

method), 79
draw_point() (holodeck.environments.HolodeckEnvironment

method), 79
dtype (holodeck.sensors.AbuseSensor attribute), 100
dtype (holodeck.sensors.AvoidTask attribute), 100
dtype (holodeck.sensors.BallLocationSensor attribute),

101
dtype (holodeck.sensors.CleanUpTask attribute), 101
dtype (holodeck.sensors.CollisionSensor attribute), 102
dtype (holodeck.sensors.CupGameTask attribute), 102
dtype (holodeck.sensors.DistanceTask attribute), 103
dtype (holodeck.sensors.FollowTask attribute), 103
dtype (holodeck.sensors.HolodeckSensor attribute),

104
dtype (holodeck.sensors.IMUSensor attribute), 104
dtype (holodeck.sensors.JointRotationSensor attribute),

105
dtype (holodeck.sensors.LocationSensor attribute), 105
dtype (holodeck.sensors.LocationTask attribute), 105
dtype (holodeck.sensors.OrientationSensor attribute),

106
dtype (holodeck.sensors.PressureSensor attribute), 106
dtype (holodeck.sensors.RangeFinderSensor attribute),

108
dtype (holodeck.sensors.RelativeSkeletalPositionSensor

attribute), 109
dtype (holodeck.sensors.RGBCamera attribute), 107
dtype (holodeck.sensors.RotationSensor attribute), 109
dtype (holodeck.sensors.VelocitySensor attribute), 110
dtype (holodeck.sensors.ViewportCapture attribute),

111
dtype (holodeck.sensors.WorldNumSensor attribute),

111

E
enqueue_command()

(holodeck.command.CommandCenter method),
88

F
FollowTask (class in holodeck.sensors), 103

G
get_binary_path_for_package() (in module

holodeck.packagemanager), 95
get_binary_path_for_scenario() (in module

holodeck.packagemanager), 96
get_config_json_string()

(holodeck.sensors.SensorDefinition method),
110

get_high() (holodeck.spaces.ActionSpace method),
83

get_high() (holodeck.spaces.ContinuousActionSpace
method), 84

126 Index

Holodeck Documentation, Release 0.3.1

get_high() (holodeck.spaces.DiscreteActionSpace
method), 85

get_holodeck_path() (in module holodeck.util),
115

get_holodeck_version() (in module
holodeck.util), 115

get_joint_constraints()
(holodeck.agents.AndroidAgent method),
68

get_joint_constraints()
(holodeck.agents.HandAgent method), 70

get_joint_constraints()
(holodeck.agents.HolodeckAgent method),
72

get_joint_constraints()
(holodeck.agents.NavAgent method), 73

get_joint_constraints()
(holodeck.agents.SphereAgent method), 73

get_joint_constraints()
(holodeck.agents.TurtleAgent method), 74

get_joint_constraints()
(holodeck.agents.UavAgent method), 75

get_joint_constraints()
(holodeck.environments.HolodeckEnvironment
method), 80

get_low() (holodeck.spaces.ActionSpace method), 84
get_low() (holodeck.spaces.ContinuousActionSpace

method), 84
get_low() (holodeck.spaces.DiscreteActionSpace

method), 85
get_os_key() (in module holodeck.util), 115
get_package_config_for_scenario() (in

module holodeck.packagemanager), 96
get_scenario() (in module

holodeck.packagemanager), 96
GL_VERSION (class in holodeck.holodeck), 65

H
HAND_AGENT_MAX_TORQUES

(holodeck.agents.ControlSchemes attribute), 69
HandAgent (class in holodeck.agents), 69
handle_buffer() (holodeck.command.CommandCenter

method), 88
has_camera() (holodeck.agents.HolodeckAgent

method), 72
holodeck.agents (module), 67
holodeck.command (module), 87
holodeck.environments (module), 77
holodeck.exceptions (module), 117
holodeck.holodeck (module), 65
holodeck.holodeckclient (module), 93
holodeck.packagemanager (module), 95
holodeck.sensors (module), 99
holodeck.shmem (module), 113

holodeck.spaces (module), 83
holodeck.util (module), 115
holodeck.weather (module), 119
HolodeckAgent (class in holodeck.agents), 70
HolodeckClient (class in holodeck.holodeckclient),

93
HolodeckConfigurationException, 117
HolodeckEnvironment (class in

holodeck.environments), 77
HolodeckException, 117
HolodeckSensor (class in holodeck.sensors), 103
human_readable_size() (in module holodeck.util),

116

I
IMUSensor (class in holodeck.sensors), 104
info() (holodeck.environments.HolodeckEnvironment

method), 80
install() (in module holodeck.packagemanager), 96
installed_packages() (in module

holodeck.packagemanager), 96

J
joint_ind() (holodeck.agents.AndroidAgent static

method), 69
joint_ind() (holodeck.agents.HandAgent static

method), 70
JointRotationSensor (class in holodeck.sensors),

104

L
load_scenario_file() (in module

holodeck.packagemanager), 96
LocationSensor (class in holodeck.sensors), 105
LocationTask (class in holodeck.sensors), 105

M
make() (in module holodeck.holodeck), 65
malloc() (holodeck.holodeckclient.HolodeckClient

method), 93
move_viewport() (holodeck.environments.HolodeckEnvironment

method), 80

N
name (holodeck.agents.HolodeckAgent attribute), 71
NAV_TARGET_LOCATION

(holodeck.agents.ControlSchemes attribute), 69
NavAgent (class in holodeck.agents), 72
NotFoundException, 117

O
OPENGL3 (holodeck.holodeck.GL_VERSION attribute),

65

Index 127

Holodeck Documentation, Release 0.3.1

OPENGL4 (holodeck.holodeck.GL_VERSION attribute),
65

OrientationSensor (class in holodeck.sensors),
106

P
package_info() (in module

holodeck.packagemanager), 96
PressureSensor (class in holodeck.sensors), 106
prune() (in module holodeck.packagemanager), 96

Q
queue_size (holodeck.command.CommandCenter at-

tribute), 89

R
RangeFinderSensor (class in holodeck.sensors),

107
RelativeSkeletalPositionSensor (class in

holodeck.sensors), 108
release() (holodeck.holodeckclient.HolodeckClient

method), 94
remove() (in module holodeck.packagemanager), 96
remove_all_packages() (in module

holodeck.packagemanager), 97
remove_sensors() (holodeck.agents.HolodeckAgent

method), 72
RemoveSensorCommand (class in

holodeck.command), 90
RenderQualityCommand (class in

holodeck.command), 90
RenderViewportCommand (class in

holodeck.command), 90
reset() (holodeck.environments.HolodeckEnvironment

method), 80
RGBCamera (class in holodeck.sensors), 106
RGBCameraRateCommand (class in

holodeck.command), 90
rotate() (holodeck.sensors.HolodeckSensor method),

104
RotateSensorCommand (class in

holodeck.command), 90
RotationSensor (class in holodeck.sensors), 109

S
sample() (holodeck.spaces.ActionSpace method), 84
sample() (holodeck.spaces.ContinuousActionSpace

method), 85
sample() (holodeck.spaces.DiscreteActionSpace

method), 85
scenario_info() (in module

holodeck.packagemanager), 97

send_world_command()
(holodeck.environments.HolodeckEnvironment
method), 80

sensor_data (holodeck.sensors.HolodeckSensor at-
tribute), 104

SensorDefinition (class in holodeck.sensors), 109
SensorFactory (class in holodeck.sensors), 110
sensors (holodeck.agents.HolodeckAgent attribute), 71
set_command_type()

(holodeck.command.Command method),
88

set_control_scheme()
(holodeck.agents.HolodeckAgent method),
72

set_control_scheme()
(holodeck.environments.HolodeckEnvironment
method), 80

set_day_time() (holodeck.weather.WeatherController
method), 119

set_fog_density()
(holodeck.weather.WeatherController method),
119

set_location() (holodeck.command.SpawnAgentCommand
method), 91

set_name() (holodeck.command.SpawnAgentCommand
method), 91

set_physics_state()
(holodeck.agents.HolodeckAgent method),
72

set_render_quality()
(holodeck.environments.HolodeckEnvironment
method), 81

set_rotation() (holodeck.command.SpawnAgentCommand
method), 91

set_ticks_per_capture()
(holodeck.sensors.RGBCamera method),
107

set_type() (holodeck.command.SpawnAgentCommand
method), 91

set_weather() (holodeck.weather.WeatherController
method), 120

shape (holodeck.spaces.ActionSpace attribute), 84
Shmem (class in holodeck.shmem), 113
should_render_viewport()

(holodeck.environments.HolodeckEnvironment
method), 81

size (holodeck.command.CommandsGroup attribute),
89

spawn_prop() (holodeck.environments.HolodeckEnvironment
method), 81

SpawnAgentCommand (class in holodeck.command),
90

SphereAgent (class in holodeck.agents), 73
start_day_cycle()

128 Index

Holodeck Documentation, Release 0.3.1

(holodeck.weather.WeatherController method),
120

start_game() (holodeck.sensors.CupGameTask
method), 102

start_task() (holodeck.sensors.CleanUpTask
method), 101

step() (holodeck.environments.HolodeckEnvironment
method), 81

stop_day_cycle() (holodeck.weather.WeatherController
method), 120

T
teleport() (holodeck.agents.HolodeckAgent

method), 72
TeleportCameraCommand (class in

holodeck.command), 91
tick() (holodeck.environments.HolodeckEnvironment

method), 82
TimeoutException, 117
to_json() (holodeck.command.Command method), 88
to_json() (holodeck.command.CommandsGroup

method), 89
TurtleAgent (class in holodeck.agents), 74

U
UAV_ROLL_PITCH_YAW_RATE_ALT

(holodeck.agents.ControlSchemes attribute), 69
UAV_TORQUES (holodeck.agents.ControlSchemes at-

tribute), 69
UavAgent (class in holodeck.agents), 74
unlink() (holodeck.shmem.Shmem method), 113

V
VelocitySensor (class in holodeck.sensors), 110
ViewportCapture (class in holodeck.sensors), 110

W
WeatherController (class in holodeck.weather),

119
world_info() (in module

holodeck.packagemanager), 97
WorldNumSensor (class in holodeck.sensors), 111

Index 129

	Installation
	Requirements
	Install Client via pip
	Install Client via git
	Docker Installation
	Managing World Packages

	Getting Started
	Code Examples

	Using Holodeck
	Viewport Hotkeys
	Units and Coordinates in Holodeck
	Improving Holodeck Performance
	Using Holodeck Headless
	Configuring Weather and Time

	Holodeck Packages
	DefaultWorlds Package
	Dexterity package
	Package Structure
	Scenarios
	Tasks
	Package Installation Location

	Holodeck Agents
	AndroidAgent
	HandAgent
	NavAgent
	SphereAgent
	TurtleAgent
	UavAgent

	Changelog
	Holodeck 0.3.1
	Holodeck 0.3.0
	Holodeck 0.2.2
	Holodeck 0.2.1
	Holodeck 0.1.0

	Holodeck
	Agents
	Environments
	Spaces
	Commands
	Holodeck Client
	Package Manager
	Sensors
	Shared Memory
	Util
	Exceptions
	Weather Controller
	Indices and tables
	Python Module Index
	Index

